Avian Carnivore, Ungulate, and Effects on Bone

  • Diane Gifford-Gonzalez
Chapter

Abstract

This chapter describes the effects of vertebrate bone-modifiers other than mammalian and reptilian carnivores, including the disparate impacts of raptorial bird families, bone-consuming and bone-trampling herbivores and omnivores, and rodents. Many such actors create distinctive bone surface modifications or patterns of skeletal element destruction that allow the zooarchaeologist to identify their action on individual specimens or their bone accumulations. Reading aggregate archaeofaunal data from contexts where both humans and other bone accumulators could have resided requires knowledge of these actors’ distinctive traces on elements of species both could have accumulated. This chapter discusses whether and how microfauna accumulated by raptors can be used to reconstruct ancient environments, citing computer modeling of time-averaged accumulations in relation to natural fluctuations in rodent populations. Hoofed animals treading on skeletal elements may leave traces resembling cut marks, and the chapter reports on experimentally derived approaches to distinguish trample marks from hominid-inflicted cut marks at relatively low magnifications, using a few diagnostic variables visible at low magnifications. The chapter also discusses modifications to tusks and antlers during life that be mistaken for human artifacts, providing illustrations and references.

Keywords

Raptors Acid etching Trampling Ungulate osteophagia Antler Rodent gnawing 

References

  1. Andrews, P. (1990). Owls, caves, and fossils. Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK. Chicago: University of Chicago Press.Google Scholar
  2. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319, 768–771.CrossRefGoogle Scholar
  3. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1989). Nonhuman bone modification to Miocene fossils from Pakistan. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 99–120). Orono: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  4. Berger, L. R., & Clarke, R. J. (1995). Eagle involvement in accumulation of the Taung child fauna. Journal of Human Evolution, 29(3), 275–299.CrossRefGoogle Scholar
  5. Berger, L. R., & McGraw, W. S. (2007). Further evidence for eagle predation of, and feeding damage on, the Taung child. [Research letters]. South African Journal of Science, 103(11–12), 496–498.Google Scholar
  6. Bocheński, Z. M. (2005). Owls, diurnal raptors, and humans: Signatures on avian bones. In T. O’Connor (Ed.), Biosphere to lithosphere: New studies in vertebrate taphonomy (pp. 31–45). Oxford: Oxbow Books.Google Scholar
  7. Bocheński, Z. M., & Tomek, T. (1997). Preservation of bird bones: Erosion versus digestion by owls. International Journal of Osteoarchaeology, 7(4), 372–387.CrossRefGoogle Scholar
  8. Bochenski, Z. M., Tomek, T., Tornberg, R., & Wertz, K. (2009). Distinguishing nonhuman predation on birds: Pattern of damage done by the white-tailed eagle Haliaetus albicilla, with comments on the punctures made by the golden eagle Aquila chrysaetos. Journal of Archaeological Science, 36(1), 122–129.CrossRefGoogle Scholar
  9. Bowyer, R. T. (1983). Osteophagia and antler breakage among Roosevelt elk. California Fish and Game, 69(2), 84–88.Google Scholar
  10. Brain, C. K. (1981). The hunters or the hunted? An introduction to South African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  11. Bredin, I. P., Skinner, J. D., & Mitchell, G. (2008). Can osteophagia provide giraffes with phosphorus and calcium? Onderstepoort Journal of Veterinary Research, 75(1), 1–9.CrossRefGoogle Scholar
  12. Brothwell, D. (1976). Further evidence of bone chewing by ungulates: The sheep of North Ronaldsay. Journal of Archaeological Science, 3(2), 179–182.CrossRefGoogle Scholar
  13. Broughton, J. M., Cannon, V. I., Arnold, S., Bogiatto, R. J., & Dalton, K. (2006). The taphonomy of owl-deposited fish remains and the origin of the Homestead Cave ichthyofauna. Journal of Taphonomy, 4(2), 69–95.Google Scholar
  14. Butler, V. L., & Schroeder, R. (1998). Do digestive processes leave diagnostic traces on fish bones? Journal of Archaeological Science, 25(10), 957–971.CrossRefGoogle Scholar
  15. Cáceres, I., Esteban-Nadal, M., Bennàsar, M., & Fernández-Jalvo, Y. (2011). Was it the deer or the fox? Journal of Archaeological Science, 38(10), 2767–2774.CrossRefGoogle Scholar
  16. De Cupere, B., Thys, S., Van Neer, W., Ervynck, A., Corremans, M., & Waelkens, M. (2009). Eagle owl (Bubo bubo) pellets from Roman Sagalassos (SW Turkey): Distinguishing the prey remains from nest and roost sites. International Journal of Osteoarchaeology, 19(1), 1–22.CrossRefGoogle Scholar
  17. de Ruiter, D. J., Copeland, S. R., Lee-Thorp, J., & Sponheimer, M. (2010). Investigating the role of eagles as accumulating agents in the dolomitic cave infills of South Africa. Journal of Taphonomy, 8(1–2), 129–154.Google Scholar
  18. Denton, D. A., Blair-West, J. R., McKinley, M. J., & Nelson, J. F. (1986). Problems and paradigms: Physiological analysis of bone appetite (osteophagia). BioEssays, 4(1), 40–43.Google Scholar
  19. Dodson, P., & Wexler, D. (1979). Taphonomic investigations of owl pellets. Paleobiology, 5(3), 275–284.CrossRefGoogle Scholar
  20. Domínguez-Rodrigo, M., De Juana, S., Galán, A. B., & Rodríguez, M. (2009). A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science, 36(12), 2643–2654.CrossRefGoogle Scholar
  21. Domínguez-Solera, S. D., & Domínguez-Rodrigo, M. (2009). A taphonomic study of bone modification and of tooth-mark patterns on long limb bone portions by suids. International Journal of Osteoarchaeology, 19(3), 345–363.CrossRefGoogle Scholar
  22. Duke, G. E., Evanson, O. A., & Jegers, A. A. (1976). Meal to pellet intervals in 14 species of captive raptors. Comparative Biochemistry and Physiology Part A: Physiology, 53(1), 1–6.CrossRefGoogle Scholar
  23. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications: 1001+ images of fossil and recent mammal bone modification, vertebrate paleobiology and paleoanthropology. Dordrecht: Springer.Google Scholar
  24. Fiorillo, A. R. (1984). An introduction to the identification of trample marks. Current Research in the Pleistocene, 1, 47–48.Google Scholar
  25. Fiorillo, A. R. (1989). An experimental study of trampling implications for the fossil record. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 61–72). Orono: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  26. Galdikas, B. M. F. (1978). Orangutan death and scavenging by pigs. Science, 200(4337), 68–70.CrossRefGoogle Scholar
  27. Grayson, D. K. (1981). A critical view of the use of archaeological vertebrates in paleoenvironmental reconstruction. Journal of Ethnobiology, 1(1), 28–38.Google Scholar
  28. Grayson, D. K. (1998). Moisture history and small mammal community richness during the latest Pleistocene and Holocene, northern Bonneville Basin, Utah. Quaternary Research, 49(3), 330–334.Google Scholar
  29. Grayson, D. K. (2000). Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United States. Journal of Biogeography, 27(1), 181–192.Google Scholar
  30. Grayson, D. K. (2011). The Great Basin: A natural prehistory. Berkeley: University of California Press.Google Scholar
  31. Greenfield, H. J. (1988). Bone consumption by pigs in a contemporary Serbian village: Implications for the interpretation of prehistoric faunal assemblages. Journal of Field Archaeology, 15(4), 473–479.CrossRefGoogle Scholar
  32. Haynes, G. (1991). Mammoths, mastodons, and elephants. Biology, behavior, and the fossil record. Cambridge: Cambridge University Press.Google Scholar
  33. Haynes, G., & Krasinski, K. E. (2010). Taphonomic fieldwork in southern Africa and its application in studies of the earliest peopling of North America. Journal of Taphonomy, 8(2–3), 181–202.Google Scholar
  34. Hockett, B. S. (1989). The concept of “carrying range”: A method for determining the role played by woodrats in contributing bones to archaeological sites. Nevada Archaeologist, 7, 28–35.Google Scholar
  35. Hockett, B. S. (1991). Toward distinguishing human and raptor patterning on leporid bones. American Antiquity, 56(4), 667–679.CrossRefGoogle Scholar
  36. Hockett, B. S. (1993). Taphonomy of the leporid bones from Hogup Cave, Utah: Implications for cultural continuity in the eastern Great Basin. Doctoral dissertation, University of Nevada, Reno.Google Scholar
  37. Hoffman, R. (1988). The contribution of raptorial birds to patterning in small mammal assemblages. Paleobiology, 14(1), 81–90.CrossRefGoogle Scholar
  38. Hoffman, R., & Hays, C. (1988). The eastern wood rat (Neotoma floridana) as a taphonomic factor in archaeological sites. Journal of Archaeological Science, 14(3), 325–337.CrossRefGoogle Scholar
  39. Houston, D. C., & Copsey, J. A. (1994). Bone digestion and intestinal morphology of the bearded vulture. The Journal of Raptor Research, 28(2), 73–78.Google Scholar
  40. Hughes, A. R. (1961). Further notes on the habits of hyaenas and bone gathering by porcupines. Zoological Society of South Africa News Bulletin, 3(1), 35–37.Google Scholar
  41. Hutson, J. M., Burke, C. C., & Haynes, G. (2013). Osteophagia and bone modifications by giraffe and other large ungulates. Journal of Archaeological Science, 40(12), 4139–4149.CrossRefGoogle Scholar
  42. Kierdorf, U. (1993). Fork formation and other signs of osteophagia on a long bone swallowed by a red deer stag (Cervus elaphus). International Journal of Osteoarchaeology, 3(1), 37–40.CrossRefGoogle Scholar
  43. Kusmer, K. D. (1990). Taphonomy of owl pellet deposition. Journal of Paleontology, 64(4), 629–637.CrossRefGoogle Scholar
  44. Lomolino, M. V., Brown, J. H., & Davis, R. (1989). Island biogeography of montane forest mammals in the American Southwest. Ecology, 70(1), 180–194.CrossRefGoogle Scholar
  45. Lyman, R. L. (1987). Zooarchaeology and taphonomy: A general consideration. Journal of Ethnobiology, 7, 93–117.Google Scholar
  46. Lyman, R. L. (1994a). Relative abundances of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios, 9(3), 288–298.Google Scholar
  47. Lyman, R. L. (1994b). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  48. Maguire, J. M., Pemberton, D., & Collett, M. H. (1980). The Makapansgat Limeworks grey breccia: Hominids, hyaenas, hystricids, or hillwash? Palaeontologia Africana, 23, 75–98.Google Scholar
  49. Margalida, A. (2008). Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behavioral Ecology and Sociobiology, 63(2), 187–193.CrossRefGoogle Scholar
  50. Mayhew, D. F. (1977). Avian predators as accumulators of fossil mammal material. Boreas, 6(1), 25–31.CrossRefGoogle Scholar
  51. Mellet, J. S. (1974). Scatological origin of microvertebrate fossil accumulations. Science, 185(4148), 349–350.CrossRefGoogle Scholar
  52. Mundy, P. J., & Ledger, J. A. (1976). Griffon vultures, carnivores, and bones. South African Journal of Science, 72(4), 106–110.Google Scholar
  53. Olsen, S. L. (1989). On distinguishing natural from cultural damage on archaeological antler. Journal of Archaeological Science, 16(2), 125–135.CrossRefGoogle Scholar
  54. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15(5), 535–554.CrossRefGoogle Scholar
  55. Plug, I. (1978). Collecting patterns of six species of vultures (Aves: Accipitridae). Annals of the Transvaal Museum, 31(6), 51–63.Google Scholar
  56. Rabinovitch, R., & Horwitz, L. K. (1994). An experimental approach to porcupine damage to bones: A gnawing issue. Art, 9, 97–118.Google Scholar
  57. Raczynski, J., & Ruprecht, A. L. (1974). The effect of digestion on the osteological composition of owl pellets. Acta Ornithologia, 14(2), 25–38.Google Scholar
  58. Richardson, P. R. K., Mundy, P. J., & Plug, I. (1986). Bone crushing carnivores and their significance to osteodystrophy in griffon vulture chicks. Journal of Zoology (London), 210, 23–43.CrossRefGoogle Scholar
  59. Russ, H. (2010). The Eurasian eagle owl (Bubo bubo): A fish bone accumulator on Pleistocene cave sites? Journal of Taphonomy, 8(4), 281–290.Google Scholar
  60. Saavedra, B., & Simonetti, J. A. (1998). Small mammal taphonomy: Intraspecific bone assemblage comparison between South and North American barn owl, Tyto alba, populations. Journal of Archaeological Science, 25(2), 165–170.Google Scholar
  61. Schmitt, D. N. (1995). The taphonomy of golden eagle prey accumulations at Great Basin roosts. Journal of Ethnobiology, 15(2), 237–256.Google Scholar
  62. Schmitt, D. N., & Juell, K. E. (1994). Toward the identification of coyote scatological faunal accumulations in archaeological contexts. Journal of Archaeological Science, 21(2), 249–262.CrossRefGoogle Scholar
  63. Sekulic, R., & Estes, R. D. (1977). A note on bone chewing in the sable antelope in Kenya. Mammalia, 41, 537–539.Google Scholar
  64. Shipman, P., & Rose, J. J. (1983). Early hominid hunting, butchering, and carcass processing behavior: Approaches to the fossil record. Journal of Anthropological Archaeology, 2(1), 57–98.CrossRefGoogle Scholar
  65. Shipman, P., & Rose, J. J. (1984). Cutmark mimics on modern and fossil bovid bones. Current Anthropology, 25(1), 116–117.CrossRefGoogle Scholar
  66. Sutcliffe, A. J. (1973). Similarity of bones and antlers gnawed by deer to human artifacts. Nature, 246(5433), 428–430.CrossRefGoogle Scholar
  67. Sutcliffe, A. J. (1976). Further notes on bones and antlers chewed by deer and other ungulates. Deer, 4, 73–82.Google Scholar
  68. Teleki, G. (1973). The omnivorous chimpanzee. Scientific American, 228(1), 32–42.CrossRefGoogle Scholar
  69. Terry, R. C. (2004). Owl pellet taphonomy: A preliminary study of the post-regurgitation taphonomic history of pellets in a temperate forest. Palaios, 19(5), 497–506.Google Scholar
  70. Terry, R. C. (2007). Inferring predator identity from skeletal damage of small-mammal prey remains. Evolutionary Ecology Research, 9, 199–219.Google Scholar
  71. Terry, R. C. (2008). Modeling the effects of predation, prey cycling, and time averaging on relative abundance in raptor-generated small mammal death assemblages. Palaios, 23(5/6), 402–410.Google Scholar
  72. Theiler, A., Green, H. H., & Du Toit, P. J. (1924). Phosphorus in the livestock industry. South African Department of Agriculture Journal, 8, 460–504.Google Scholar
  73. Yalden, D. W., & Yalden, P. E. (1985). An experimental investigation of examining kestrel diet by pellet analysis. Bird Study, 32(1), 50–55.Google Scholar
  74. Yellen, J. E. (1977). Cultural patterning in faunal remains: Evidence from the !Kung Bushmen. In J. E. Yellen, D. Ingersoll, & W. Macdonald (Eds.), Experimental archaeology (pp. 271–331). New York: Columbia University Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations