Mammalian and Reptilian Carnivore Effects on Bone

  • Diane Gifford-Gonzalez


This chapter provides an overview of the effects of mammalian carnivores on vertebrate bodies, including human gnawing and reduction of skeletal elements, plus research on bone modifications by crocodiles. It offers summaries of systematic patterns of carcass and bone consumption by mammalian carnivores in general and by specific taxa – canids, felids, hyenids, ursids – and how these may be modulated by regional ecology. Building upon actualistic research on regularities in carcass and skeletal element consumption sequences, it details common modifications to bones inflicted by the teeth of gnawing carnivores and typical patterns of destruction of different elements and discusses whether tooth marks can be used to infer the taxon of the gnawing mammal. Modifications are well illustrated to facilitate identification. It reviews bone modifications inflicted by human gnawing and summarizes what is known of bone modification by crocodiles. Succeeding chapters on the effects of various actors and processes follow the same general format.


Carnivore Mammal Crocodile Tooth marks Acid etching Carnivore ravaging 


  1. Baquedano, E., Domínguez-Rodrigo, M., & Musiba, C. (2012). An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3. Journal of Archaeological Science, 39(6), 1728–1737.CrossRefGoogle Scholar
  2. Binford, L. R. (1962). Archaeology as anthropology. American Antiquity, 28(2), 217–225.CrossRefGoogle Scholar
  3. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  4. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
  5. Binford, L. R., & Bertram, J. (1977). Bone frequencies – And attritional processes. In L. R. Binford (Ed.), For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling (pp. 77–153). New York: Academic Press.Google Scholar
  6. Binford, L. R., Mills, M. G. L., & Stone, N. M. (1988). Hyena scavenging behavior and its implications for the interpretation of faunal assemblages from FLK 22 (the Zinj floor) at Olduvai Gorge. Journal of Anthropological Archaeology, 7(2), 99–135.CrossRefGoogle Scholar
  7. Bishop, G. A. (1975). Traces of predation. In R. W. Frey (Ed.), The study of trace fossils (pp. 261–281). New York: Springer.CrossRefGoogle Scholar
  8. Blumenschine, R. J. (1986). Carcass consumption sequences and the archaeological distinction of scavenging and hunting. Journal of Human Evolution, 15(8), 639–659.CrossRefGoogle Scholar
  9. Blumenschine, R. J. (1989). A landscape taphonomic model of the scale of prehistoric scavenging opportunities. Journal of Human Evolution, 18(4), 345–371.CrossRefGoogle Scholar
  10. Blumenschine, R. J. (1995). Percussion marks, tooth marks, and experimental determination of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29(1), 21–51.CrossRefGoogle Scholar
  11. Blumenschine, R. J., Cavallo, J. A., & Capaldo, S. D. (1994). Competition for carcasses and early hominid behavioral ecology: A case study and conceptual framework. Journal of Human Evolution, 27(1–3), 197–213.CrossRefGoogle Scholar
  12. Blumenschine, R. J., Prassack, K. A., Kreger, C. D., & Pante, M. C. (2007). Carnivore tooth-marks, microbial bioerosion, and the invalidation of Domínguez-Rodrigo and Barba’s (2006) test of Oldowan hominin scavenging behavior. Journal of Human Evolution, 53(4), 420–426.CrossRefGoogle Scholar
  13. Bocherens, H., Fizet, M., & Mariotti, A. (1990). Mise en évidence du régime alimentaire végétarien de l’ours des cavernes (Ursus spelaeus ) par la biogéochemie isotopique (13C, 15N) du collagène des vertébrés fossiles. Comptes rendus de l’Academie des Sciences de Paris, Série II, 311, 1279–1284.Google Scholar
  14. Borrero, L. A., Martín, F. M., & Vargas, J. (2005). Tafonomía de la interacción entre pumas y guanacos en el Parque Nacional Torres del Paine, Chile. Magallania, 33(1), 95–114.CrossRefGoogle Scholar
  15. Brain, C. K. (1981). The hunters or the hunted? An introduction to South African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  16. Dela Cruz, T. (2002). Dasyurus viverrinus: eastern quoll. Accessed 2009, 2017.
  17. Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrest, F., Hertel, F., & Oliver, J. S. (2009). Pits and pitfalls: taxonomic variability and patterning in tooth mark dimensions. Journal of Archaeological Science, 36(11), 2597–2608.CrossRefGoogle Scholar
  18. de Ruiter, D. J., & Berger, L. R. (2000). Leopards as taphonomic agents in dolomitic caves—Implications for bone accumulations in the hominid-bearing deposits of South Africa. Journal of Archaeological Science, 27(8), 665–684.Google Scholar
  19. Dewey, T., Fahey, B., & Kinder, A. (2001). Sarcophilus harrisii: Tasmanian devil. Accessed 2009, 2017.
  20. Domínguez-Rodrigo, M. (2003). Bone surface modifications, power scavenging and the “display” model at early archaeological sites: A critical review. Journal of Human Evolution, 45(5), 411–415.CrossRefGoogle Scholar
  21. Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.CrossRefGoogle Scholar
  22. Dominguez-Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaeological Science, 30(11), 1385–1391.CrossRefGoogle Scholar
  23. Elkin, D., & Mondini, N. M. (1996). Human and carnivore tooth damage on bones: An exploratory study and its archaeological implications. In L. A. Kuznar (Ed.), Ethnoarchaeology of Andean South America: Contributions to archaeological method and theory. Ann Arbor, MI: International Monographs in Prehistory.Google Scholar
  24. Faith, J. T., & Behrensmeyer, A. K. (2006). Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 33(12), 1718–1733.CrossRefGoogle Scholar
  25. Fernández-Jalvo, Y., & Andrews, P. (2011). When humans chew bones. Journal of Human Evolution, 60(1), 117–123.CrossRefGoogle Scholar
  26. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications: 1001+ Images of fossil and recent mammal bone modification (Vertebrate Paleobiology and Paleoanthropology). Dordrecht: Springer.Google Scholar
  27. Fisher, J. W. (1995). Bone surface modifications in zooarchaeology. Journal of Archaeological Method and Theory, 2(1), 7–68.CrossRefGoogle Scholar
  28. Fleay, D. H. (1932). The rare dasyures (native cats). Victorian Naturalist, 49, 63–68.Google Scholar
  29. Gargett, R. (1996). Cave bears and modern human origins. The spatial taphonomy of Pod Hradem Cave, Czech Republic. Lanham, MD: University Press of America.Google Scholar
  30. Gidna, A., Yravedra, J., & Domínguez-Rodrigo, M. (2013). A cautionary note on the use of captive carnivores to model wild predator behavior: A comparison of bone modification patterns on long bones by captive and wild lions. Journal of Archaeological Science, 40(4), 1903–1910.CrossRefGoogle Scholar
  31. Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  32. Gifford-Gonzalez, D. (1993). Gaps in zooarchaeological analyses of butchery: Is gender an issue? In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 181–199, Occasional Paper, Vol. 21). Carbondale, IL: Center for Archaeological Investigations, Southern Illinois University Press.Google Scholar
  33. Guiler, E. R. (1970). Observations on the tasmanian Devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) 1. Numbers, home range, movements, and food in two populations. Australian Journal of Zoology, 18(49–62).Google Scholar
  34. Haynes, G. (1980a). Evidence of carnivore gnawing on Pleistocene and Recent mammalian bones. Paleobiology, 6(3), 341–351.CrossRefGoogle Scholar
  35. Haynes, G. (1980b). Prey bones and predators: Potential ecologic information from analysis of bone sites. OSSA, 7, 75–97.Google Scholar
  36. Haynes, G. (1983). A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9(2), 164–172.CrossRefGoogle Scholar
  37. Horwitz, L. K., & Smith, P. (1988). The effects of striped hyena activity on human remains. Journal of Archaeological Science, 15(5), 471–481.CrossRefGoogle Scholar
  38. Kruuk, H. (1972). The spotted hyena: A study of predation and social behavior (Wildlife Behavior and Ecology). Chicago: University of Chicago Press.Google Scholar
  39. Kuhn, B. F., Berger, L. R., & Skinner, J. D. (2009). Variation in tooth mark frequencies on long bones from the assemblages of all three extant bone-collecting hyaenids. Journal of Archaeological Science, 36(2), 297–307.CrossRefGoogle Scholar
  40. Landt, M. J. (2007). Tooth marks and human consumption: Ethnoarchaeological mastication research among foragers of the Central African Republic. Journal of Archaeological Science, 34(10), 1629–1640.CrossRefGoogle Scholar
  41. Leung, Y. (2002). Dasyurus geoffroii: western quoll. Accessed 2009, 2017.
  42. Lotan, E. (2000). Feeding the scavengers. Actualistic taphonomy in the Jordan Valley, Israel. International Journal of Osteoarchaeology, 10(6), 407–425.CrossRefGoogle Scholar
  43. Lyman, R. L. (1987). Archaeofaunas and butchery studies: A taphonomic perspective. Advances in Archaeological Method and Theory, 10, 249–337.CrossRefGoogle Scholar
  44. Marean, C. W. (1989). Sabertooth cats and their relevance for early hominid diet and evolution. Journal of Human Evolution, 18(6), 559–582.CrossRefGoogle Scholar
  45. Marean, C. W. (1991). Measuring the post-depositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18(6), 677–694.CrossRefGoogle Scholar
  46. Marean, C. W., & Ehrhardt, C. L. (1995). Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. Journal of Human Evolution, 29(6), 515–547.CrossRefGoogle Scholar
  47. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(4), 645–658.CrossRefGoogle Scholar
  48. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19(1), 101–121.Google Scholar
  49. Marshall, B., & Cosgrove, R. (1990). Tasmanian devil (Sarcophilus harrisii) scat-bone: Signature criteria and archaeological implications. Archaeology in Oceania, 25(3), 102–113.Google Scholar
  50. Martínez, G. (2009). Human chewing bone surface modification and processing of small and medium prey amongst the Nukak (foragers of the Colombian Amazon). Journal of Taphonomy, 7(1), 1–19.Google Scholar
  51. (2008). Online Dictionary.
  52. Mills, M. G. L., & Mills, M. E. J. (1978). The diet of the brown hyaena Hyaena brunnea in the Southern Kalahari. Koedoe, 21(1), 125–149.Google Scholar
  53. Monchot, H., & Mashkour, M. (2010). Hyenas around the city (Kashan, Iran). Journal of Taphonomy, 8(1), 17–32.Google Scholar
  54. Mondini, N. M. (1995). Artiodactyl prey transport by foxes in Puna rock shelters. Current Anthropology, 36(3), 520–524.CrossRefGoogle Scholar
  55. Mondini, N. M., & Muñoz, A. S. (2008). Pumas as taphonomic agents: A comparative analysis of actualistic studies in the neotropics. Quaternary International, 180(1), 52–62.Google Scholar
  56. Njau, J. K., & Blumenschine, R. J. (2006). A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. Journal of Human Evolution, 50(2), 142–162.CrossRefGoogle Scholar
  57. Oliver, J. S. (1993). Carcass processing by the Hadza: Bone breakage from butchery to consumption. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 200–227, Occasional Paper, Vol. 21). Carbondale, IL: Center for Archaeological Investigations, Southern Illinois University Press.Google Scholar
  58. Oliver, J. S. (1994). Estimates of hominid and carnivore involvement in the FLK Zinjanthropus fossil assemblage: Some socioecological implications. Journal of Human Evolution, 27(1–3), 267–294.CrossRefGoogle Scholar
  59. Pickering, T. R., & Wallis, J. (1997). Bone modifications resulting from captive chimpanzee mastication: Implications for the interpretation of Pliocene archaeological faunas. Journal of Archaeological Science, 24(12), 1115–1127.CrossRefGoogle Scholar
  60. Pickering, T. R., Domínguez-Rodrigo, M., Egeland, C. P., & Brain, C. K. (2004). Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkrans Member 3 fossil assemblage. Journal of Human Evolution, 46(5), 595–604.CrossRefGoogle Scholar
  61. Plummer, T. W., & Stanford, C. B. (2000). Analysis of a bone assemblage made by chimpanzees at Gombe National Park, Tanzania. Journal of Human Evolution, 39(3), 345–365.CrossRefGoogle Scholar
  62. Scott, L., & Klein, R. G. (1981). A hyena-accumulated bone assemblage from late Holocene deposits at Deelpan, Orange Free State. Annals of the South African Museum, 86, 217–227.Google Scholar
  63. Selvaggio, M. M. (1994). Carnivore tooth marks and stone tool butchery marks on scavenged bones: Archaeological implications. Journal of Human Evolution, 27(1–3), 215–228.CrossRefGoogle Scholar
  64. Selvaggio, M. M., & Wilder, J. (2001). Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science, 28(5), 465–470.CrossRefGoogle Scholar
  65. Shipman, P., & Rose, J. J. (1983). Early hominid hunting, butchering, and carcass processing behavior: Approaches to the fossil record. Journal of Anthropological Archaeology, 2(1), 57–98.CrossRefGoogle Scholar
  66. Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 211–229). Cambridge: Cambridge University Press.Google Scholar
  67. Sobbe, I. H. (1990). Devils on the Darling Downs – The tooth mark record. Memoirs of the Queensland Museum, 27(2), 299–322.Google Scholar
  68. Solomon, S. (1985). People and other aggravations: Taphonomic research in Australia. B. A. Thesis, University of New England, New South Wales, Australia.Google Scholar
  69. Stiner, M. C. (1991). Food procurement and transport by human and non-human predators. Journal of Archaeological Science, 18(4), 455–482.CrossRefGoogle Scholar
  70. Stiner, M. C. (1994). Honor among thieves: A zooarchaeological study of neandertal ecology. Princeton, NJ: Princeton University Press.Google Scholar
  71. Stiner, M. C., Arsebük, G., & Howell, F. C. (1996). Cave bears and paleolithic artifacts in Yarimburgaz Cave, Turkey: Dissecting a palimpsest. Geoarchaeology, 11(4), 279–327.CrossRefGoogle Scholar
  72. Van Valkenburgh, B., Teaford, M. F., & Walker, A. (1990). Molar microwear and diet in large carnivores: Inferences concerning diet in the sabretooth cat, Smilodon fatalis. Journal of Zoology (The Zoological Society of London), 222(2), 319–340.Google Scholar
  73. Van Valkenburgh, B. (1988). Incidence of tooth breakage among large predatory mammals. American Naturalist, 131(2), 291–302.CrossRefGoogle Scholar
  74. Walshe, K. (1994). A taphonomic analysis of the vertebrate materials from Allen’s Cave: Implications for Australian arid zone archaeology. Canberra: Australian National University.Google Scholar
  75. White, T. D. (1992). Prehistoric Cannibalism at Mancos 5MTUMR-2346. Princeton: Princeton University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations