Human, Animal, Geological Causes of Bone Breakage

  • Diane Gifford-Gonzalez


This chapter reviews the history of bone breakage research in archaeology, from early studies that assumed spiral fractures were diagnostic traces of deliberate hominin weapon or tool making to those based upon actualistic research, which have shown that such breakage can be produced by multiple actors in a range of situations. The biomedical literature on bone as a material provides useful terms for understanding the circumstances under which bones break. This chapter describes static, dynamic, and torsional loading stresses and describes how intrinsic osteonal organization has a strong influence on overall fracture morphology. It outlines how break surfaces and fracture angles generally reflect the degree to which bone collagen fibers have deteriorated or bone mineral has been replaced in diagenesis. This chapter argues that the presence or absence of surface modifications is an independent line of evidence regarding the effector and actor of bone breakage.


Fracture stress strain static loading dynamic loading torsional loading break morphology 


  1. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  2. Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.CrossRefGoogle Scholar
  3. Biddick, K. A., & Tomenchuk, J. (1975). Quantifying continuous lesions and fractures on long bones. Journal of Field Archaeology, 2(3), 239–249.Google Scholar
  4. Biewener, A. A., & Taylor, C. R. (1986). Bone strain: A determinant of gait and speed? Journal of Experimental Biology, 123, 383–400.Google Scholar
  5. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
  6. Binford, L. R., & Bertram, J. (1977). Bone frequencies – And attritional processes. In L. R. Binford (Ed.), For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling (pp. 77–153). New York: Academic Press.Google Scholar
  7. Blasco, R., Domínguez-Rodrigo, M., Arilla, M., Camarós, E., & Rosell, J. (2014). Breaking bones to obtain marrow: A comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry, 56(6), 1085–1104.CrossRefGoogle Scholar
  8. Bonfield, W., & Li, C. H. (1966). Deformation and fracture of bone. Journal of Applied Physics, 37(2), 869–875.Google Scholar
  9. Bonnichsen, R. (1973). Some operational aspects of human and animal bone alteration. In B. M. Gilbert (Ed.), Mammalian osteoarchaeology: North America (pp. 9–24). Columbia: Missouri Archaeological Society.Google Scholar
  10. Bonnichsen, R. (1979). Pleistocene bone technology in the Beringian Refugium (Mercury Series, Archaeological Survey of Canada, Vol. 89). Ottawa: Museum of Man.Google Scholar
  11. Brain, C. K. (1967). Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station, 32, 1–7.Google Scholar
  12. Brain, C. K. (1969). The contribution of Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.Google Scholar
  13. Brain, C. K. (1981). The hunters or the hunted? An introduction to South African Cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  14. Breuil, H. (1938). The use of bone implements in the Old Paleolithic period. Antiquity, 12(45), 56–67.CrossRefGoogle Scholar
  15. Breuil, H. (1939). Bone and antler industry of the Choukoutien Sinanthropus site. Palaeontologia Sinica, n.s. D, no. 6.Google Scholar
  16. Bunn, H. T. (1989). Diagnosing Plio-Pleistocene hominid activity with bone fracture evidence. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 299–315). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  17. Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33(5), 555–597.CrossRefGoogle Scholar
  18. Currey, J. D. (2002). Bones: Structure and mechanics. Princeton: Princeton University Press.Google Scholar
  19. Dart, R. A. (1949). The predatory implemental technique of Australopithecus. American Journal of Physical Anthropology, 7(1), 1–38.CrossRefGoogle Scholar
  20. Dart, R. A. (1957). The osteodontokeratic culture of Australopithecus prometheus, Transvaal Museum Memoir (Vol. 10). Pretoria: The Transvaal Museum.Google Scholar
  21. Dart, R. A. (1959). Further light on australopithecine humeral and femoral weapons. American Journal of Physical Anthropology, 17(2), 87–93.CrossRefGoogle Scholar
  22. Davis, K. L. (1985). A taphonomic approach to experimental bone fracturing and applications to several South African pleistocene sites. Binghamton: SUNY Binghamton.Google Scholar
  23. Evans, F. G. (1957). Stress and strain in bones: Their relation to fractures and osteogenesis , American Lectures in Medical Physics (Vol. 296). Springfield, IL: Charles C. Thomas.Google Scholar
  24. Gifford, D. P. (1977). Observations of modern human settlements as an aid to archaeological interpretation. Doctoral dissertation, University of California, Berkeley.Google Scholar
  25. Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  26. Hare, P. E. (1980). Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 208–219). Chicago: University of Chicago Press.Google Scholar
  27. Haynes, G. (1980). Evidence of carnivore gnawing on Pleistocene and Recent mammalian bones. Paleobiology, 6(3), 341–351.Google Scholar
  28. Haynes, G. (1983). Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. American Antiquity, 48(1), 102–114.CrossRefGoogle Scholar
  29. Hill, A. P. (1975). Taphonomy of contemporary and late Cenozoic East African vertebrates. Doctoral dissertation, University of London.Google Scholar
  30. Johnson, E. (1982). Paleo-Indian bone expediency tools: Lubbock Lake and Bonfire Shelter. Canadian Journal of Anthropology, 2(2), 145–157.Google Scholar
  31. Johnson, E. (1985). Current developments in bone technology. Advances in Archaeological Method and Theory, 8, 157–235.CrossRefGoogle Scholar
  32. Johnson, E., & Holliday, V. T. (1986). The Archaic record at Lubbock Lake. Plains Anthropologist, Memoir 21, 31(114), 7–54.CrossRefGoogle Scholar
  33. Jopling, A. V., Irving, W. N., & Beebe, B. F. (1981). Stratigraphic, sedimentological and faunal evidence for the occurrence of pre-Sangamonian artefacts in Northern Yukon. Arctic, 34(1), 3–33.CrossRefGoogle Scholar
  34. Karr, L. P., & Outram, A. K. (2012a). Bone degradation and environment: Understanding, assessing and conducting archaeological experiments using modern animal bones. International Journal of Osteoarchaeology, 25(2), 201–212.CrossRefGoogle Scholar
  35. Karr, L. P., & Outram, A. K. (2012b). Tracking changes in bone fracture morphology over time: Environment, taphonomy, and the archaeological record. Journal of Archaeological Science, 39(2), 555–559.CrossRefGoogle Scholar
  36. Kitching, J. W. (1963). Bone, tooth and horn tools of Palaeolithic man: An account of the osteodontokeratic discoveries in Pinhole Cave, Derbyshire. Manchester: Manchester University Press.Google Scholar
  37. Lyman, R. L. (1984). Broken bones, bone expediency tools, and bone pseudotools: Lessons from the blast zone around Mount St. Helens, Washington. American Antiquity, 49(2), 315–333.CrossRefGoogle Scholar
  38. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  39. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(4), 645–658.CrossRefGoogle Scholar
  40. Marean, C. W., Abe, Y., Frey, C. J., & Randall, R. C. (2000). Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age larger mammal fauna. Journal of Human Evolution, 38(1), 197–233.CrossRefGoogle Scholar
  41. Marshall, F. B. (1986). Implications of bone modification in a Neolithic faunal assemblage for the study of early hominid butchery and subsistence practices. Journal of Human Evolution, 15(8), 661–672.Google Scholar
  42. Martin, R. B., & Burr, D. B. (1989). Structure, function, and adaptation of compact bone. New York: Raven Press.Google Scholar
  43. Martin, R. B., Burr, D. B., & Sharkey, N. A. (1998). Skeletal tissue mechanics. New York: Springer.CrossRefGoogle Scholar
  44. Martiniakova, M., Grosskopf, B., Omelka, R., Vondrakova, M., & Bauerova, M. (2006). Differences among species in compact bone tissue microstructure of mammalian skeleton: Use of a discriminant function analysis for species identification. Journal of Forensic Sciences, 51(6), 1235–1239.CrossRefGoogle Scholar
  45. Mengoni Goñalons, G. L. (1982). Notas zooarqueológicas I: Fracturas en huesos. Actas del VII Congreso Nacional de Arqueología, Colonia del Sacramento (Uruguay), 1980, (87–91). Montevideo: Centro de Estudios Arqueológicos.Google Scholar
  46. Morlan, R. E. (1983). Spiral fractures on limb bones: Which ones are artificial? In A. S. MacEachern & G. M. LeMoine (Eds.), Carnivores, humans scavengers and predators: A question of bone modification (pp. 241–269). Calgary: University of Calgary Archaeological Association.Google Scholar
  47. Morlan, R. E. (1984). Toward the definition of criteria for the recognition of artificial bone alterations. Quaternary Research, 22(2), 160–171.CrossRefGoogle Scholar
  48. Myers, T. P., Voorhies, M. R., & Corner, R. G. (1980). Spiral fractures and bone pseudotools at paleontological sites. American Antiquity, 45(3), 483–490.CrossRefGoogle Scholar
  49. Nalla, R. K., Kinney, J. H., & Ritchey, R. P. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2, 164–168.CrossRefGoogle Scholar
  50. Oliver, J. S. (1993). Carcass processing by the Hadza: Bone breakage from butchery to consumption. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (Vol. 21, pp. 200–227., Occasional Paper). Carbondale, IL: Center for Archaeological Investigations, Southern Illinois University Press.Google Scholar
  51. Richardson, P. R. K. (1980). Carnivore damage to antelope bones and its archaeological implications. Palaeontologia Africana, 23, 109–125.Google Scholar
  52. Richter, J. (1986). Experimental study of heat induced morphological changes in fish bone collagen. Journal of Archaeological Science, 13(5), 477–481.CrossRefGoogle Scholar
  53. Rubin, C. T., & Lanyon, L. E. (1982). Limb mechanics as a function of speed and gait: A study of functional strains in the radius and tibia of horse and dog. Journal of Experimental Biology, 101(1), 187–211.Google Scholar
  54. Sadek-Kooros, H. (1972). Primitive bone fracturing: A method of research. American Antiquity, 37(3), 369–382.CrossRefGoogle Scholar
  55. Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 211–229). Cambridge: Cambridge University Press.Google Scholar
  56. Tappen, N. C., & Peske, G. R. (1970). Weathering cracks and split-line patterns in archaeological bone. American Antiquity, 35(3), 383–386.CrossRefGoogle Scholar
  57. Thompson, J. C. (2005). The impact of post-depositional processes on bone surface modification frequencies: a corrective strategy and its application to the Loiyangalani Site, Serengeti Plains, Tanzania. Journal of Taphonomy, 3(3), 67–90.Google Scholar
  58. Thorson, R. M., & Guthrie, R. D. (1984). River ice as a taphonomic agent: An alternative hypothesis for bone “artifacts.” Quaternary Research, 22(2), 172–188.Google Scholar
  59. Todd, L. C., & Rapson, D. J. (1988). Long bone fragmentation and interpretation of faunal assemblages: Approaches to comparative analysis. Journal of Archaeological Science, 15(3), 307–325.CrossRefGoogle Scholar
  60. Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21(1), 27–48.CrossRefGoogle Scholar
  61. Wang, X., Mabrey, J. D., & Agrawal, C. M. (1998). An interspecies comparison of bone fracture properties. Bio-medical Materials and Engineering, 8(1), 1–9.Google Scholar
  62. Wieberg, D. A. M., & Wescott, D. J. (2008). Estimating the timing of long bone fractures: Correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. Journal of Forensic Sciences, 53(5), 1028–1034.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations