Skip to main content

How Climate Is Studied

  • Chapter
  • First Online:
Problems, Philosophy and Politics of Climate Science

Part of the book series: Springer Climate ((SPCL))

  • 690 Accesses

Abstract

The study of climate includes a large number of methods and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Broecker, W. S. (1991). The great ocean conveyor. Oceanography, 4, 79.

    Article  Google Scholar 

  • Broecker, W. S. (2010). The great ocean conveyor. Princeton University Press.

    Google Scholar 

  • Callen, H. B., & Greene, R. F. (1952). On a theorem of irreversible thermodynamics. Physical Review, 86, 702.

    Article  CAS  Google Scholar 

  • Canty, T., Mascioli, N. R., Smarte, M. D., & Salawitch, R. J. (2013). An empirical model of global climate-Part 1: a critical evaluation of volcanic cooling. Atmospheric Chemistry and Physics, 13, 3997.

    Article  Google Scholar 

  • Charney, J. G. (1947). The dynamics of long waves in a baroclinic westerly current. Journal of the Meteorological, 4, 135.

    Article  Google Scholar 

  • Dyson, G. (2012). Turing’s cathedral. Vintage Books.

    Google Scholar 

  • Fujiwara, M., Ibino, T., Mehta, S. K., Gray, L., Mitchell, D., & Anstey, J. (2015). Global temperature response to the major volcani eruptions in multiple reanalysis data set. Atmospheric Chemistry and Physics, 15, 13507.

    Article  CAS  Google Scholar 

  • Gordon, A. L. (1986). Inter-ocean exchange of thermohaline water. Journal of Geophysical Research: Oceans, 91, 5037.

    Article  Google Scholar 

  • Hanel, R. A., Conrath, B. J., Jennings, D. E., & Samuelson, R. E. (1992). Exploration of the solar system by infrared remote sensing. Cambridge University Press.

    Google Scholar 

  • Hansen, J. E., Wang, W. C., & Lacis, A. A. (1978). Mount Agung eruption provides test of a global climatic perturbation. Science, 199, 1065.

    Article  CAS  Google Scholar 

  • Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis:testing the limits of global change. Terra Nova, 4, 129.

    Article  Google Scholar 

  • Huang, X., Farrara, J., Leroy, S. S., Yung, Y. L., & Goody, R. (2002). TCloud variability as revealed in outgoing infrared spectra: Comparing model to observation with spectral EOF analysis. Geophysical Research Letters, 29. doi:10.1029/2001GL014176.

  • Kirk-Davidoff, D. B. (2009). On the diagnosis of climate sensitivity using observations of fluctuations. Atmosphere Chemical Physics, 9, 813–22.

    Article  CAS  Google Scholar 

  • Leith, C. E. (1975). Climate response and fluctuation dissipation. Journal of the Atmospheric Sciences, 32, 2022.

    Article  Google Scholar 

  • Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130.

    Article  Google Scholar 

  • Lovejoy, S. (2013). What is climate? EOS, 94, 1–2. Permission from the author

    Google Scholar 

  • Lowell, T. V., Fisher, T. G., Comer, G. C., Hajdas, I., Waterson, N., Glover, K., et al. (2005). Testing the Lake Agassiz meltwater trigger for the Younger Dryas. EOS, 40, 365.

    Article  Google Scholar 

  • Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., & Yang, Z. (2010). Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic ocean. Nature, 464, 740.

    Article  CAS  Google Scholar 

  • Nebeker, F. (1995). Calculating the weather, meteorology in the 20th century. Academic Press.

    Google Scholar 

  • Palmer, T. N., Doblas-Reyes, F. J., Weishmeier, A., & Rodwell, M. J. (2008). Toward seamless prediction calibration of climate change projections using seasonal forecasts. Bulletin of the American Meteorological Society, 89, 459. \(\copyright \) American Meteorological Society. Used with permission.

    Google Scholar 

  • Palmer, T. N. (2016). A personal perspective on modelling the. Proceeding of the Royal Society A, 472, 20150772 unrestricted use.

    Google Scholar 

  • Pollack, J. B., Toon, O. B., Ackermann, T. P., McKay, C. P., & R. P., Turco,. (1983). Environmental effects of an impact generated dust cloud: implications for the Cretaceous-Tertiary extinction. Science, 219, 287.

    Google Scholar 

  • Rapp, D. (2010). Ice ages and interglacials: measurements, interpretation and models. Springer.

    Google Scholar 

  • Rougier, J., & Goldstein, M. (2014). Climate simulators and climate projections. Annual Review of Statistics and its Application, 1, 103. Reproduced with permission of Annual Review \(\copyright \) by Annual Reviews

    Google Scholar 

  • Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., et al. (2002). Is the Gulf stream responsible for Europes mild winters? Quaretly Journal of the Royal Meteorological Society, 128, 2563.

    Article  Google Scholar 

  • Smagorinsky, J. (1983). The beginnings of numerical weather prediction and general circulation modeling: early recollections, in B. Saltzman (Ed.), Theory of Climate (Vol. 25). Advances in Geophysics. Ac. Press

    Google Scholar 

  • Stephenson, D. B., Collins, M., Rougier, J. C., & Chandler, R. E. (2012). Statistical problems in the probabilistic prediction of climate change. Envirometrics, 23, 364.

    Article  Google Scholar 

  • Turco, R. P., Toon, O. B., Ackermann, T. P., Pollack, J. B., & Sagan, Carl. (1983). Nuclear winter: Global consequences of multiple nuclear explosions. Science, 222, 1283.

    Article  CAS  Google Scholar 

  • Toon, O. B., Pollack, J. B., Ackermann, T. P., Turco, R. P., McKay, C. P., & Liu, M. S. (1982). Evolution of an impact-generated dust cloud and is effects on the atmosphere (p. 190). Special Paper: Geological Society of America.

    Google Scholar 

  • Wunsch, C. (2004). Gulf stream safe if wind blows and Earth turns. Nature, 428, 601. Reprinted by permission from Macmillan Publishers Ltd.

    Google Scholar 

  • Wunsch, C. (2001). Global problems and Global onservations. In G. Siedler, J. Church, & J. Gould (Eds.), Ocean circulation and climate. Ac: Press. With permission from Elsevier.

    Google Scholar 

  • Wunsch, C. (2010). Towards the understanding of the paleocean. Quaternary Science Review, 29, 1960. With permission from Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Visconti .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Visconti, G. (2018). How Climate Is Studied. In: Problems, Philosophy and Politics of Climate Science. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-65669-4_2

Download citation

Publish with us

Policies and ethics