Advertisement

Energy and Climate – Global Trends and Their Implications for Delta Restoration

  • Jeffrey S. Rutherford
  • Adrian R. H. Wiegman
  • John W. Day
  • Robert R. Lane
Chapter
Part of the Estuaries of the World book series (EOTW)

Abstract

Climate change and energy scarcity pose challenges for the sustainability of the Mississippi River Delta and its future restoration. Projected trends for climate change suggest increasing risk in the coastal zone from sea-level rise, more frequent high-intensity hurricanes, and increased Mississippi River discharge. Simultaneously, analysis of energy return on investment suggests that energy is becoming more expensive and difficult to produce, which does not bode well for energy intensive activities like building river levees and pumping dredged sediment. For these reasons, while coastal restoration is becoming progressively urgent, its implementation will be both challenging and expensive. The objective of this chapter is to introduce the basic science behind climate change and energy, and discuss its relevance to the Mississippi River Delta. The evidence presented here makes it clear that the current management of the delta is unsustainable, and an aggressive new approach based on the natural functioning of the delta is required in the future.

Keywords

Climate change Sea-level rise Fossil fuels Renewable energy Energy return on investment Ecological engineering 

References

  1. American Association of Port Authorities (AAPA). World Port Rankings 2015. Accessed on 5 Jan 2017 at: www.aapa-ports.org/unifying/content.aspx?ItemNumber=21048
  2. Aucott M, Hall C (2014) Does a change in price of fuel affect GDP growth? An examination of the US data from 1950–2013. Energies 7(10):6558–6570Google Scholar
  3. Barnes S, Bond C, Burger N, Anania K, Strong A, Weilant S, Virgets S (2015) Economic evaluation of coastal land loss in Louisiana. Available online: coastal.la.Gov/economic-evaluation-of-land-loss-in-louisiana/
  4. Bentley RW (2016) Introduction to peak oil. Springer, New YorkCrossRefGoogle Scholar
  5. Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2(7):488–491CrossRefGoogle Scholar
  6. Blum MD, Roberts HH (2012) The Mississippi delta region: past, present, and future. Annu Rev Earth Planet Sci 40:655–683CrossRefGoogle Scholar
  7. Brandt AR, Englander J, Bharadwaj S (2013) The energy efficiency of oil sands extraction: energy return ratios from 1970 to 2010. Energy 55:693–702CrossRefGoogle Scholar
  8. Brandt AR, Yeskoo T, Vafi K (2015) Net energy analysis of Bakken crude oil production using a well-level engineering-based model. Energy 93:2191–2198CrossRefGoogle Scholar
  9. British Petroleum (BP) (2016) BP statistical review of world energy 2016. British Petroleum, LondonGoogle Scholar
  10. Carbajales-Dale M, Krumdieck S, Bodger P (2012) Global energy modelling—a biophysical approach (GEMBA) Part 2: Methodology. Ecol Econ 73:158–167Google Scholar
  11. Campanella R (2007) Above sea-level New Orleans: the residential capacity of Orleans Parish’s higher ground. Center for Bioenvironmental Research, New OrleansGoogle Scholar
  12. Carter LM, Jones JW, Berry L, Burkett V, Murley JF, Obeysekera J, Schramm PJ, Wear D (2014) Ch. 17: Southeast and the Caribbean. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate change impacts in the United States: the third national climate assessment. U.S. global change research program, Washington, D.C, pp 396–417.  https://doi.org/10.7930/J0NP22CB Google Scholar
  13. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4–5):585–602Google Scholar
  14. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett, 38(18):L18601.  https://doi.org/10.1029/2011gl048794
  15. Cleveland CJ (2005) Net energy from the extraction of oil and gas in the United States. Energy 30(5):769–782CrossRefGoogle Scholar
  16. Coastal Protection and Restoration Authority of Louisiana (CPRA) (2017). 2017 master plan data viewer Accessed 15 Feb 2017 at: cims.coastal.louisiana.gov/masterplan/
  17. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496Google Scholar
  18. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65CrossRefGoogle Scholar
  19. Davenport C, Robertson C (2016) Resettling the first American climate refugees, New York Times, 3 May, Available online: www.nytimes.com/2016/05/03/us/resettling-the-first-american-climate-refugees.html?_r=1
  20. Davidsson S, Grandell L, Wachtmeister H, Höök M (2014) Growth curves and sustained commissioning modelling of renewable energy: investigating resource constraints for wind energy. Energ Policy 73:767–776CrossRefGoogle Scholar
  21. Day JW, Martin JF, Cardoch L, Templet PH (1997) System functioning as a basis for sustainable management of deltaic ecosystems. Coast Manag 25(2):115–153CrossRefGoogle Scholar
  22. Day JW, Britsch LD, Hawes SR, Shaffer GP, Reed DJ, Cahoon D (2000) Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuar Coasts 23(4):425–438CrossRefGoogle Scholar
  23. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA (2007) Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315(5819):1679–1684CrossRefGoogle Scholar
  24. Day JW, Agboola J, Chen Z, D’Elia C, Forbes DL, Giosan L, Kemp P, Kuenzer C, Lane RR, Ramachandran R, Syvitski J (2016) Approaches to defining deltaic sustainability in the 21st century. Estuar Coast Shelf Sci 183:275–291CrossRefGoogle Scholar
  25. DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597CrossRefGoogle Scholar
  26. EIA (2015a) Annual Energy Outlook 2015. U.S. Energy Information Administration, WashingtonGoogle Scholar
  27. EIA (2015b) Today in Energy. Energy Information Agency, 26 June, Available online: www.eia.gov/todayinenergy/detail.php?id=21832
  28. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688CrossRefGoogle Scholar
  29. Energy Information Agency (EIA) (2013) Today in Energy. U.S. Energy Information Agency, 10 June, Available online: www.eia.gov/todayinenergy/detail.php?id=11611
  30. Ferris R (2016) Baton Rouge floods broke a record many thought would never be broken , CNBC, 17 August, Available online: www.cnbc.com/2016/08/17/baton-rouge-floods-broke-a-record-many-thought-would-never-be-broken.html
  31. Ferroni F, Hopkirk RJ (2016) Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energ Policy 94:336–344CrossRefGoogle Scholar
  32. Fizaine F, Court V (2016) Energy expenditure, economic growth, and the minimum EROI of society. Energ Policy 95:172–186CrossRefGoogle Scholar
  33. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, Van Vuuren DP, Le Quéré C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7(10):709–715CrossRefGoogle Scholar
  34. García-Olivares A, Ballabrera-Poy J (2015) Energy and mineral peaks, and a future steady state economy. Technol Forecast Soc Chang 90:587–598CrossRefGoogle Scholar
  35. Georgescu-Roegen N (1975) Energy and economic myths. Southern Economic JournalGoogle Scholar
  36. GISTEMP Team (2017) GISS surface temperature analysis (GISTEMP). NASA Goddard Institute for Space Studies. Accessed 16 April 2017 at: data.giss.nasa.gov/gistemp/
  37. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18(9):1326–1350CrossRefGoogle Scholar
  38. Hamilton JD (2009) Causes and Consequences of the Oil Shock of 2007-08(No. w15002). Natl Bur Econ ResGoogle Scholar
  39. Hall CA (2017) Energy return on investment. Springer International Publishing, ChamCrossRefGoogle Scholar
  40. Hall CAS, Powers R, Schoenberg W (2008) Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel D (ed) Renewable energy systems: environmental and energetic issues. Elsevier, LondonGoogle Scholar
  41. Hall CA, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energ Policy 64:141–152CrossRefGoogle Scholar
  42. Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101:16109–16114CrossRefGoogle Scholar
  43. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4). doi:10.1029/2010RG000345Google Scholar
  44. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E, Velicogna I (2015) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 C global warming is highly dangerous. Atmos Chem Phys 16(6):3761–3812CrossRefGoogle Scholar
  45. Hausfather Z (2013) IPCC’s new estimates for increased sea-level rise. Yale Climate Connections, 23 October, Available online: www.yaleclimateconnections.org/2013/10/ipccs-new-estimates-for-increased-sea-level-rise/
  46. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. American Association for the Advancement of Science, Washington, DCGoogle Scholar
  47. Höök M, Li J, Johansson K, Snowden S (2012) Growth rates of global energy systems and future outlooks. Nat Resour Res 21(1):23–41CrossRefGoogle Scholar
  48. Hopkinson CS, Day JW (1980) Net energy analysis of alcohol production from sugarcane. Science 207(4428):302–304CrossRefGoogle Scholar
  49. Hornsey MJ, Harris EA, Bain PG, Fielding KS (2016) Meta-analyses of the determinants and outcomes of belief in climate change. Nat Clim Chang 6(6):622–626CrossRefGoogle Scholar
  50. Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 84:1–6Google Scholar
  51. Hoyos CD, Agudelo PA, Webster PJ, Curry JA (2006) Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312(5770):94–97CrossRefGoogle Scholar
  52. Hubbert MK (1956) Nuclear energy and the fossil fuels drilling and production practice (95). American petroleum institute, Shell Development CoGoogle Scholar
  53. International Energy Agency (IEA) (2015) Key world energy statistics 2015. International Energy Agency, ParisGoogle Scholar
  54. IPCC Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  55. IPCC, Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  56. Isle de Jean Charles Resettlement. Available online: www.coastalresettlement.org/
  57. Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energ Policy 39(3):1154–1169CrossRefGoogle Scholar
  58. Jacobson MZ, Delucchi MA, Bazouin G, Bauer ZA, Heavey CC, Fisher E, Morris SB, Piekutowski DJ, Vencill TA, Yeskoo TW (2015) 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ Sci 8(7):2093–2117CrossRefGoogle Scholar
  59. Jevrejeva S, Moore JC, Grinsted A (2012) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Chang 80:14–20CrossRefGoogle Scholar
  60. Jones N (2013) Rising tide. Nature 501(7467):300Google Scholar
  61. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348(6242):1469–1472CrossRefGoogle Scholar
  62. Kaufmann RK, Cleveland CJ (2008) Environmental science. McGraw-Hill College, BostonGoogle Scholar
  63. Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci 108(29):11790–11179CrossRefGoogle Scholar
  64. Kemp GP, Day JW, Freeman AM (2014) Restoring the sustainability of the Mississippi River Delta. Ecol Eng 65:131–146CrossRefGoogle Scholar
  65. Khan SA, Kjær KH, Bevis M, Bamber JL, Wahr J, Kjeldsen KK, Bjørk AA, Korsgaard NJ, Stearns LA, Van Den Broeke MR, Liu L (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat Clim Chang 4(4):292–299CrossRefGoogle Scholar
  66. King CW, Hall CA (2011) Relating financial and energy return on investment. Sustainability 3(10):1810–1832CrossRefGoogle Scholar
  67. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163CrossRefGoogle Scholar
  68. Kolker AS, Allison MA, Hameed S (2011) An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys Res Lett 38(21):L21404CrossRefGoogle Scholar
  69. Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S (2016) Temperature-driven global sea-level variability in the common era. Proc Natl Acad Sci 113(11):E1434–E1441CrossRefGoogle Scholar
  70. Lam NSN, Arenas H, Brito PL, Liu KB (2014) Assessment of vulnerability and adaptive capacity to coastal hazards in the Caribbean region. J coast Res 70(sp1):473–478Google Scholar
  71. Lambert JG, Hall CA, Balogh S, Gupta A, Arnold M (2014) Energy, EROI and quality of life. Energ Policy 64:153–167CrossRefGoogle Scholar
  72. Lawrence Livermore National Laboratory (LLNL) 2016 Energy Flow Charts. http://flowcharts.llnl.gov. (Accessed 25 Jan 2016)
  73. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793CrossRefGoogle Scholar
  74. Lynch MC (2016) The “Peak Oil” scare and the coming oil flood. Praeger, Santa BarbaraGoogle Scholar
  75. Maggio G, Cacciola G (2012) When will oil, natural gas, and coal peak? Fuel 98:111–123CrossRefGoogle Scholar
  76. McGlade CE (2014) Uncertainties in the outlook for oil and gas. Doctoral dissertation, UCL (University College London)Google Scholar
  77. McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature 517(7533):187–190CrossRefGoogle Scholar
  78. Mei W, Xie SP, Primeau F, McWilliams JC, Pasquero C (2015) Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci Adv 1(4):e1500014CrossRefGoogle Scholar
  79. Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381CrossRefGoogle Scholar
  80. Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135CrossRefGoogle Scholar
  81. Molina M, McCarthy J, Wall D, Alley R, Cobb K, Cole J, Das S, Diffenbaugh N, Emanuel K, Frumkin H, Hayhoe L (2014) What we know: the reality, risks and response to climate change. American Association for the Advancement of Science, Washington, DCGoogle Scholar
  82. Montano S (2016) The Louisiana floods are devastating, and climate change will bring more like them. We’re not ready. Vox, 23 August, available online: http://www.vox.com/2016/8/18/12522036/louisiana-flood-climate-change-emergency-management
  83. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizoul I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchel J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies technical summary. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  84. Murphy DJ, Hall CAS, Powers B (2011) New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ Dev Sustain 13(1):179–202CrossRefGoogle Scholar
  85. National Bureau of Statistics of China (NBSC). 2016. China statistical yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/2016/indexeh.htm
  86. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(S1):435–446CrossRefGoogle Scholar
  87. Neslen A (2015) Wind power generates 140% of Denmark’s electricity demand. The Guardian, 10 July, available online: https://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand
  88. Neslen A (2016) Portugal runs for four days straight on renewable energy alone. The Guardian, 18 may, available online: https://www.theguardian.com/environment/2016/may/18/portugal-runs-for-four-days-straight-on-renewable-energy-alone
  89. Nobles WP (2016) Louisiana flooding records were broken on these four rivers, The Times-Picayune, 14 August, Available online: http://www.nola.com/weather/index.ssf/2016/08/4_rivers_break_crest_records_i.html
  90. Odum HT (1973) Energy, ecology, and economics. Ambio 2:220–227Google Scholar
  91. Oreskes N (2004) The scientific consensus on climate change. Science 306(5702):1686–1686CrossRefGoogle Scholar
  92. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AG, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385CrossRefGoogle Scholar
  93. Palmer G (2014) Energy in Australia: peak oil, solar power, and Asia’s economic growth. Springer, New YorkCrossRefGoogle Scholar
  94. Parris A, Bromirski P, Burkett V, Cayan D, Culver M, Hall J, Horton R, Knuuti K, Moss R, Obeysekera J, Sallenger A, Weiss J (2012) Global sea level rise scenarios for the US National Climate Assessment. NOAA Tech Memo OAR CPO-1Google Scholar
  95. Petit J, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436CrossRefGoogle Scholar
  96. Pfeffer WT, Harper J, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343CrossRefGoogle Scholar
  97. Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1–12CrossRefGoogle Scholar
  98. Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2016) The future intensification of hourly precipitation extremes. Nat Clim Chang 7(1):48–52CrossRefGoogle Scholar
  99. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315(5810):368–370CrossRefGoogle Scholar
  100. REN21 (2015) Renewables 2016 global status report, REN21 secretariat, ParisGoogle Scholar
  101. Ricardo D (1891) Principles of political economy and taxation. G. Bell and sons, LondonGoogle Scholar
  102. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JT (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5):L18601CrossRefGoogle Scholar
  103. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys Res Lett 41(10):3502–3509CrossRefGoogle Scholar
  104. Scripps Institution of Oceanography. The keeling curve. Available online: https://scripps.ucsd.edu/programs/keelingcurve/
  105. Shaffer GP, Day JW, Kandalepas D, Wood WB, Hunter RG, Lane RR, Hillmann ER (2016) Decline of the Maurepas swamp, Pontchartrain Basin, Louisiana, and approaches to restoration. Water 8(3):101CrossRefGoogle Scholar
  106. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev 2(1):81–98CrossRefGoogle Scholar
  107. Struzik E (2016) Once unstoppable, Tar Sands now battered from all sides. Yale environment 360, 1 February, available online: http://e360.yale.edu/feature/once-unstoppable_tar_sands_now_battered_from_all_sides/2954/
  108. Svensmark H (2009) Mens Solen sover, Jyllands- Posten, 9 September, Available online: http://jyllands-posten.dk/protected/debat/kronik/article4170671.ece
  109. Sverdrup HU, Ragnarsdottir KV, Koca D (2015) An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J Clean Prod 140:359–372CrossRefGoogle Scholar
  110. Syvitski JP, Kettner AJ, Overeem I, Hutton EW, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2(10):681–686CrossRefGoogle Scholar
  111. Tao B, Tian H, Ren W, Yang J, Yang Q, He R, Cai W, Lohrenz S (2014) Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO2. Geophys Res Lett 41(14):4978–4986CrossRefGoogle Scholar
  112. Tessler ZD, Vörösmarty CJ, Grossberg M, Gladkova I, Aizenman H, Syvitski JPM, Foufoula-Georgiou E (2015) Profiling risk and sustainability in coastal deltas of the world. Science 349(6248):638–643CrossRefGoogle Scholar
  113. Tollefson J (2017) Larsen C’s big divide. Nature 543(7643):402–403CrossRefGoogle Scholar
  114. Trainer T (2007) Renewable energy cannot sustain a consumer society. Springer Science & Business Media, New YorkGoogle Scholar
  115. Turner RE (1997) Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. Estuar Coasts 20(1):1–13CrossRefGoogle Scholar
  116. United Nations, Department of economic and social affairs, Population Division (2015). World population prospects: The 2015 revision, key findings and advance tables. Working paper No. ESA/P/WP.241Google Scholar
  117. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532CrossRefGoogle Scholar
  118. Vimeux F, Cuffey KM, Jouzel J (2002) New insights into southern hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet Sci Lett 203:829–843CrossRefGoogle Scholar
  119. Waggoner EG (2013). Sweet spots, EROI, and the limits to Bakken production. Thesis (M.S.), State University of New York College of environmental science and forestryGoogle Scholar
  120. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846CrossRefGoogle Scholar
  121. Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221CrossRefGoogle Scholar
  122. Zou L, Kent J, Lam NSN, Cai H, Qiang Y, Li K (2015) Evaluating land subsidence rates and their implications for land loss in the lower Mississippi River basin. Water 8(1):10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jeffrey S. Rutherford
    • 1
  • Adrian R. H. Wiegman
    • 1
  • John W. Day
    • 1
  • Robert R. Lane
    • 1
  1. 1.Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations