Advertisement

DSM Using Fish Swarm Optimization and Harmony Search Algorithm Using HEMS in Smart Grid

  • Shahzeb Haider
  • Hafiz Muhammad Faisal
  • Zenab Amin
  • Haq Nawaz
  • Kaleem Akram
  • Nadeem Javaid
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 8)

Abstract

Proliferation in smart grid gave rise to different Demand Side Management (DSM) techniques, designed for type of sectors i.e. domestic, trade and commercial sectors, very effective in smoothening load profile of the consumers in grid area network. To resolve energy crises in residential areas, smart homes are introduced; contains Smart Meters, allows bidirectional communication between utilities and customers. For this purpose, different heuristic techniques are approached to overcome state of the art energy crisis which provide best optimal solution. The purpose of our implementation is to reduce the total cost and Peak to Average Ratio value while keeping in mind that there is a trade-off of these with waiting time up to an acceptable limit. Our proposed scheme uses heuristic technique Harmony Search Algorithm with Fish Swarm Algorithm to achieve the defined goals. Real time prizing signal is used for bill calculation in Advanced Metering Infrastructure.

References

  1. 1.
    Gelazanskas, L., Gamage, K.A.: Demand side management in smart grid: a review and proposals for future direction. Sustain. Cities Soc. 11, 22–30 (2014)CrossRefGoogle Scholar
  2. 2.
    Tsai, H.C., Lin, Y.H.: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. 11(8), 5367–5374 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE, January 2012Google Scholar
  4. 4.
    Shakouri, H., Kazemi, A.: Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 32, 171–180 (2017)CrossRefGoogle Scholar
  5. 5.
    Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans. Smart Grid 6(1), 324–332 (2015)CrossRefGoogle Scholar
  6. 6.
    Moon, S., Lee, J.W.: Multi-residential demand response scheduling with multi-class appliances in smart grid. IEEE Trans. Smart Grid (2016)Google Scholar
  7. 7.
    Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)CrossRefGoogle Scholar
  8. 8.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Wang, L., Guo, W., Kang, Q., Wu, Q.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid (2017)Google Scholar
  10. 10.
    Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wireless Pers. Commun. 93(2), 481–502 (2017)CrossRefGoogle Scholar
  11. 11.
    Basit, A., Sidhu, G.A.S., Mahmood, A., Gao, F.: Efficient and autonomous energy management techniques for the future smart homes. IEEE Trans. Smart Grid (2015)Google Scholar
  12. 12.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  13. 13.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  14. 14.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  15. 15.
    Wang, H., Wang, Z., Domingo-Ferrer, J.: Anonymous and secure aggregation scheme in fog-based public cloud computing. Future Gener. Comput. Syst. (2017)Google Scholar
  16. 16.
    Busom, N., Petrlic, R., SebÃl’, F., Sorge, C., Valls, M.: Efficient smart metering based on homomorphic encryption. Comput. Commun. 82, 95–101 (2016)CrossRefGoogle Scholar
  17. 17.
    Jiang, R., Lu, R., Choo, K.K.R.: Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data. Future Gener. Comput. Syst. (2016)Google Scholar
  18. 18.
    Jo, H.J., Kim, I.S., Lee, D.H.: Efficient and privacy-preserving metering protocols for smart grid systems. IEEE Trans. Smart Grid 7(3), 1732–1742 (2016)CrossRefGoogle Scholar
  19. 19.
    Ni, J., Zhang, K., Lin, X., Shen, X.S.: EDAT: efficient data aggregation without TTP for privacy-assured smart metering. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, May 2016Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Shahzeb Haider
    • 1
  • Hafiz Muhammad Faisal
    • 1
  • Zenab Amin
    • 1
  • Haq Nawaz
    • 1
  • Kaleem Akram
    • 1
  • Nadeem Javaid
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations