Pigeon Inspired Optimization and Enhanced Differential Evolution in Smart Grid Using Critical Peak Pricing

  • Zunaira Amjad
  • Saadia Batool
  • Hafsa Arshad
  • Komal Parvez
  • Mashab Farooqi
  • Nadeem Javaid
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 8)

Abstract

In this paper, we have evaluated the performance of heuristic algorithms; Enhanced Differential Evolutionary (EDE) and Pigeon Inspired Optimization(PIO) for Demand Side Management (DSM). Moreover, Critical Peak Pricing (CPP) is used as a price traffic. The main purpose of this paper is to reduce Peak to Average Ratio (PAR) and electricity cost by scheduling appliances according to categories and constraints. Simulation results demonstrate that PIO outperforms in terms of user comfort.

References

  1. 1.
    Bobmann, T., Staffell, I.: The shape of future electricity demand: exploring load curves in 2050s Germany and Britain. Energy 90(2), 1317–1333 (2015)Google Scholar
  2. 2.
    Bouvier, S.: Deploying a smarter grid through cable solutions and services. Accessed 18 May 2017Google Scholar
  3. 3.
    Yan, Y., Qian, Y., Sharif, H., Tipper, D.: A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Commun. Surv. Tutor. 15, 5–20 (2013)CrossRefGoogle Scholar
  4. 4.
    Ma, R., Chen, H.H., Huang, Y.R., Meng, W.: Smart grid communication: its challenges and opportunities. IEEE Trans. Smart Grid 4, 36–46 (2013)CrossRefGoogle Scholar
  5. 5.
    Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy 7, 52–62 (2009)CrossRefGoogle Scholar
  6. 6.
    Nguyen, H.K., Song, J.B., Han, Z.: Distributed demand side management with energy storage in smart grid. IEEE Trans. Parallel Distrib. Syst. 26, 3346–3357 (2015)CrossRefGoogle Scholar
  7. 7.
    Goran, S.: Demand side management: benefits and challenges. Energy Policy 36(12), 4419–4426 (2008)CrossRefGoogle Scholar
  8. 8.
    Yao, E., Samadi, P., Wong, V.W.S., Schober, R.: Residential demand side management under high penetration of rooftop photovoltaic units. IEEE Trans. Smart Grid 7(3), 1597–1608 (2016)CrossRefGoogle Scholar
  9. 9.
    Chiu, T.C., Shih, Y.Y., Pang, A.C., Pai, C.W.: Optimized day-ahead pricing with renewable energy demand-side management for smart grids. IEEE Internet Things J. PP(99), 1–10 (2016)Google Scholar
  10. 10.
    Jagruti, T., Basab, C.: Demand side management in developing nations: a mitigating tool for energy imbalance and peak load management. Energy 114(1), 895–912 (2016)Google Scholar
  11. 11.
    Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)CrossRefGoogle Scholar
  12. 12.
    Thillainathan, L., Dipti, S., Zong, S.T.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)CrossRefGoogle Scholar
  13. 13.
    Logenthiran, T., et al.: Multi-Agent System (MAS) for short-term generation scheduling of a microgrid. In: 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE (2010)Google Scholar
  14. 14.
    Ghazvini, M.A.F., Faria, P., Ramos, S., Morais, H., Vale, Z.: Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. Energy 82, 786–799 (2015)CrossRefGoogle Scholar
  15. 15.
    U.S. Department of Energy: Benefits of demand response in electricity markets and recommendations for achieving them (2006)Google Scholar
  16. 16.
    Boisvert, R., Cappers, P., Neenan, B.: The benefits of customer participation in wholesale electricity markets. Electricity 15(3), 44–51 (2002)Google Scholar
  17. 17.
    Hong, S.H., Yu, M., Huang, X.: A real-time demand response algorithm for heterogeneous devices in buildings and homes. Energy 80, 123–132 (2015)CrossRefGoogle Scholar
  18. 18.
    Gao, D., Sun, Y., Lu, Y.: A robust demand response control of commercial buildings for smart grid under load prediction uncertainty. Energy 93(1), 275–283 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE (2012)Google Scholar
  20. 20.
    Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)CrossRefGoogle Scholar
  21. 21.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  22. 22.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  23. 23.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)CrossRefGoogle Scholar
  24. 24.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  25. 25.
    Srinivasan, D., Rajgarhia, S., Radha Krishnan, B.M., Sharma, A., Khincha, H.P.: Game-theory based dynamic pricing strategies for demand side management in smart grids. Energy 126, 132–143 (2016). ElsevierCrossRefGoogle Scholar
  26. 26.
    Mahmood, D., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U., Ahmed, I., Ilahi, M.: Realistic scheduling mechanism for smart homes. Energies 9(3), 202 (2016)CrossRefGoogle Scholar
  27. 27.
    Ahmad, A., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U.: Khan, A.: A modified feature selection and artificial neural network-based day-ahead load forecasting model for a smart grid. Appl. Sci. 5(4), 1756–1772 (2016)CrossRefGoogle Scholar
  28. 28.
    Rasheed, M.B., Javaid, N., Awais, M., Khan, Z.A., Qasim, U., Alrajeh, N., Iqbal, Z., Javaid, Q.: Real time information based energy management using customer preferences and dynamic pricing in smart homes. Energies 9(7), 542 (2016)CrossRefGoogle Scholar
  29. 29.
    Khan, M.A., Javaid, N., Mahmood, A., Khan, Z.A., Alrajeh, N.: A generic demand-side management model for smart grid. Int. J. Energy Res. 39(7), 954–964 (2015)CrossRefGoogle Scholar
  30. 30.
    Karimi-Nasab, M., Modarres, M., Seyedhoseini, S.M.: A self-adaptive PSO for joint lot sizing and job shop scheduling with compressible process times. Appl. Soft Comput. 28, 137–147 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Zunaira Amjad
    • 1
  • Saadia Batool
    • 1
  • Hafsa Arshad
    • 1
  • Komal Parvez
    • 1
  • Mashab Farooqi
    • 1
  • Nadeem Javaid
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations