Advertisement

An Efficient Scheduling Using Meta Heuristic Algorithms for Home Demand-side Management in Smart Grid

  • Adnan Ishaq
  • Nasir Ayub
  • Arje Saba
  • Asad Ghafar
  • Basit Amin
  • Nadeem Javaid
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 8)

Abstract

Energy consumption demand is comparatively higher than available energy, new approaches are being discovered to fulfill energy demand. This problem can be solved by assimilating Demand Side Management (DSM) with Smart Grid (SG). In this work, we observe the working of Home Energy Management System (HEMS) by using three meta-heuristic techniques; Harmony Search Algorithm (HSA) and Firefly Algorithm (FA) and Bacterial Foraging Algorithm (BFA). Time Of Use (TOU) is used as a pricing signal for calculation of electricity bill. The main concern of this paper is to minimize cost, reduce Peak to Average Ratio (PAR), maximization of user comfort and load management. Load management can be done by shifting load from on-peak hours to off-peak hours. Simulation results show that implemented techniques successfully achieve the defined goals.

Keywords

Smart Grid Demand Side Management Demand Response Heuristic techniques Harmony Search Algorithm Firefly Algorithm Bacterial Foraging Algorithm 

References

  1. 1.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home Demand-Side Management in Smart Grid. In: Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, pp. 1–5. IEEE (2012)Google Scholar
  2. 2.
    Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for Demand Response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  4. 4.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for Demand Side Management in Smart Grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  5. 5.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for Demand Response in Smart Grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)CrossRefGoogle Scholar
  6. 6.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  7. 7.
    Rasheed, M.B., Javaid, N., Awais, M., Khan, Z.A., Qasim, U., Alrajeh, N., Iqbal, Z., Javaid, Q.: Real time information based energy management using customer preferences and dynamic pricing in smart homes. Energies 9(7), 542 (2016)CrossRefGoogle Scholar
  8. 8.
    Mahmood, D., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U., Ahmed, I., Ilahi, M.: Realistic scheduling mechanism for smart homes. Energies 9(3), 202 (2016)CrossRefGoogle Scholar
  9. 9.
    Rasheed, M.B., Javaid, N., Ahmad, A., Khan, Z.A., Qasim, U., Alrajeh, N.: An efficient power scheduling scheme for residential load management in smart homes. Appl. Sci. 5, 1134–1163 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Yuen, C., Yu, R., Zhang, Y., Xie, S.: Queuing-based energy consumption management for heterogeneous residential demands in Smart Grid. IEEE Trans. Smart Grid 7, 1650–1659 (2016)CrossRefGoogle Scholar
  11. 11.
    Li, C., Yu, X., Yu, W., Chen, G., Wang, J.: Efficient computation for sparse load shifting in Demand Side Management. IEEE Trans. Smart Grid 8(1), 250–261 (2017). doi: 10.1109/TSG.2016.2521377 CrossRefGoogle Scholar
  12. 12.
    Khan, M.A., Javaid, N., Mahmood, A., Khan, Z.A., Alrajeh, N.: A generic demand side management model for Smart Grid. Int. J. Energy Res. 39, 954–964 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adnan Ishaq
    • 1
  • Nasir Ayub
    • 1
  • Arje Saba
    • 1
  • Asad Ghafar
    • 1
  • Basit Amin
    • 1
  • Nadeem Javaid
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations