Scheduling of Appliances in Home Energy Management System Using Elephant Herding Optimization and Enhanced Differential Evolution

Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 8)


In this study, problem of scheduling of appliances in Home Energy Management System (HEMS) is analyzed and a solution is proposed. Although there are many heuristic algorithms for solving the scheduling problem however we considered a swarm based heuristic algorithm Elephant Herding Optimisation (EHO). EHO uses the herding behaviour of elephants to handle the problem. To validate our research work, we simulate the single home with 12 appliances and scheduling is performed using EHO. We divided the appliances into two categories Interruptible and non-interruptible. Time of Use (TOU) pricing signal is used. Simulation results show that EHO is efficient as compare to Enhanced Differential Evolution (EDE) and unscheduled case. EHO technique is efficient in scheduling the appliances and reducing the waiting time.


  1. 1.
    Litos Strategic Communication: The Smart Grid: An Introduction. U.S. Dept. Energy, Washington, DC, USA, Technical report 560.01.04 (2009).
  2. 2.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10, 319 (2017)Google Scholar
  3. 3.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  4. 4.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013). doi: 10.1109/TSG.2013.2251018 CrossRefGoogle Scholar
  5. 5.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, pp. 1–5 (2012). doi: 10.1109/ISGT.2012.6175785
  6. 6.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electric. Power Energy Syst. 78, 320–325 (2016). ISSN 0142-0615.
  7. 7.
    Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016). doi: 10.1109/TSG.2015.2435708 CrossRefGoogle Scholar
  8. 8.
    Afar, S., Brotcorne, L., Marcotte, P., Savard, G.: Achieving an optimal trade-off between revenue and energy peak within a smart grid environment. Renew. Energy 91, 293–301 (2016). ISSN 0960-1481.
  9. 9.
    Gholian, A., Mohsenian-Rad, H., Hua, Y.: Optimal industrial load control in smart grid. IEEE Trans. Smart Grid 7(5), 2305–2316 (2016). doi: 10.1109/TSG.2015.2468577
  10. 10.
    Li, C., Yu, X., Yu, W., Chen, G., Wang, J.: Efficient computation for sparse load shifting in demand side management. IEEE Trans. Smart Grid 8(1), 250–261 (2017). doi: 10.1109/TSG.2016.2521377
  11. 11.
    Yu, M., Hong, S.H.: A real-time demand-response algorithm for smart grids: a Stackelberg game approach. IEEE Trans. Smart Grid 7(2), 879–888 (2016). doi: 10.1109/TSG.2015.2413813
  12. 12.
    Hansen, T.M., Roche, R., Suryanarayanan, S., Maciejewski, A.A., Siegel, H.J.: Heuristic optimization for an aggregator-based resource allocation in the smart grid. IEEE Trans. Smart Grid 6(4), 1785–1794 (2015). doi: 10.1109/TSG.2015.2399359
  13. 13.
    Kuppannagari, S.R., Kannan, R., Chelmis, C., Tehrani, A.S., Prasanna, V.K.: Optimal customer targeting for sustainable demand response in smart grids. Procedia Comput. Sci. 80, 324–334 (2016). ISSN 1877-0509.
  14. 14.
    Wang, G.G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 3rd International Symposium on Computational and Business Intelligence (ISCBI 2015), Bali, pp. 1–5 (2015). doi: 10.1109/ISCBI.2015.8

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations