Skip to main content

Traveling Fronts

  • Chapter
  • First Online:
  • 1588 Accesses

Abstract

Every day plant and animal immigrants arrive at ports, railway and truck stations, and airports. Few of them are carried by individual passengers, most come with goods. There are seeds and insects in every load of iron ore, even more in lumber, grain, cotton, bananas, etc. Probably it is a futile attempt to control immigration except for large animal species.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Foxes are typically territorial, but rabid foxes tend to migrate.

  2. 2.

    An integral equation vakv = f, with k ∗ 1 = 1 and a ∈ (0, 1), has the solution \(v = (1 + b\,\hat{k}{\ast})f\), where \(\hat{k} = ((1 - a)/a)\sum _{i=1}^{\infty }a^{i}k^{{\ast}i}\) is the normalized resolvent kernel and b = a∕(1 − a).

References

  1. Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse. Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

    Google Scholar 

  2. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Macmillan, New York (1975)

    MATH  Google Scholar 

  3. Bramson, M.D.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531–582 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramson, M.D.: Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45(2), 89–108 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Britton, N.: Reaction–Diffusion Equations and Their Applications to Biology. Academic, London (1986)

    MATH  Google Scholar 

  6. Dunbar, S.R.: Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-point orbits. SIAM J. Appl. Math. 46(6), 1057–1078 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunbar, S.R.: A branching random evolution and a nonlinear hyperbolic equation. SIAM J. Appl. Math. 48(6), 1510–1526 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  MATH  Google Scholar 

  9. Gallay, T., Raugel, G.: Stability of travelling waves for a damped hyperbolic equation. Z. Angew. Math. Phys. 48(3), 451–479 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadeler, K.P.: Travelling fronts for correlated random walks. Can. Appl. Math. Q. 2(1), 27–43 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Hadeler, K.P.: Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts. Sovrem. Mat. Fundam. Napravl. 17, 55–77 (2006), translation: J. Math. Sci. (N.Y.) 149(6), 1658–1678 (2008)

    Google Scholar 

  12. Hadeler, K.P.: Stefan problem, traveling fronts, and epidemic spread. Discrete Contin. Dyn. Syst. Ser. B 21(2), 417–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hadeler, K.P., Poulsen, E.T.: The asymptotic displacement of a travelling front. Methoden Verfahren Math. Phys. 17, 141–151 (1977)

    MATH  Google Scholar 

  14. Hadeler, K.P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2(3), 251–263 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadeler, K.P., an der Heiden, U., Schumacher, K.: Generation of the nervous impulse and periodic oscillations. Biol. Cybern. 23(4), 211–218 (1976)

    Google Scholar 

  16. Huang, J., Lu, G., Ruan, S.: Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol. 46, 132–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Källén, A.: Thresholds and travelling waves in an epidemic model for rabies. Nonlinear Anal. TMA 8(8), 851–856 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kanel’, Y.I.: On the stabilization of solutions to the Cauchy problem for equations occuring in the theory of burning. Mat. Sb. 59, 245–288 (1962)

    Google Scholar 

  19. Kendall, D.G.: Mathematical models of the spread of infection. In: Mathematics and Computer Science in Biology and Medicine, pp. 213–225. Medical Research Council. H.M.S.O., London (1965)

    Google Scholar 

  20. Kolmogoroff, A.N., Petrovskij, I.G., Piskunov, N.S.: Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application a une problème biologique. Bull. Univ. Moscow Ser. Int. Sec. A, 1, 1–25 (1937)

    Google Scholar 

  21. Lewis, M.A., Maini, P.K., Petrovskii, S.: Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. LNM, vol. 2071. Mathematical Biosciences Subseries. Springer, Heidelberg (2013)

    Google Scholar 

  22. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskij-Piskunov. Comm. Pure Appl. Math. 28, 323–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskij-Piskunov, Erratum. Commun. Pure Appl. Math. 29, 553–554 (1976)

    Article  MATH  Google Scholar 

  24. Rass, L., Radcliffe, J.: Spatial Deterministic Epidemics. AMS, Providence (2003)

    Book  MATH  Google Scholar 

  25. Rothe, F.: Convergence to travelling fronts in semilinear parabolic equations. Proc. R. Soc. Edinb. Sect. A 80, 213–234 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schwetlick, H.R.: Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17(4), 523–550 (2000)

    Google Scholar 

  27. Uchiyama, K.: The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453–508 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weinberger, H.F.: Long-time behaviour of a class of biological models. SIAM J. Math. Anal. 13(3), 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinberger, H.F.: On sufficient conditions for a linearly determinate spreading speed. Discrete Contin. Dyn. Syst. Ser. B 17(6), 2267–2280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45(3), 183–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weinberger, H.F., Lewis, M.A., Li, B.: Spreading speed and linear determinacy two-species competition models. J. Math. Biol. 45(3), 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weinberger, H.F., Lewis, M.A., Li, B.: Anomalous spreading speeds of cooperative recursion systems. J. Math. Biol. 55(2), 207–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadeler, KP. (2017). Traveling Fronts. In: Topics in Mathematical Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65621-2_8

Download citation

Publish with us

Policies and ethics