Skip to main content

Receptive Fields and Profiles, and Wavelet Analysis

  • Chapter
  • First Online:
  • 896 Accesses

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

This chapter discusses receptive fields and receptive profiles of visual neurons, starting with the photoreceptors and the ganglion cells of the retina, and proceeding via the neurons of the lateral geniculate nucleus to those of V1. It explains how they act on the optical signal as filters, and broaches the problem of their linearity or nonlinearity. In the linear case, the effect they have on the signal falls to a large extent under the rule of what is known as ‘wavelet analysis’ in signal processing. The chapter gives an outline of this fundamental notion, then discusses how receptive profiles can be interpreted within the framework of information theory as a means of optimizing the processing of natural images, which have very particular statistical properties. To a certain extent, the geometric formatting of the signal by means of a certain kind of wavelet (essentially, partial derivatives of Gaussians) is a way of optimizing the compression of natural images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that these are Aristotelian categories. We shall return to this philosophical aspect in the conclusion of the second volume.

  2. 2.

    The paper contains many other examples of retinal cells.

  3. 3.

    \(A-B\) indicates a colour opposition between the centre and the periphery of the GC.

  4. 4.

    Some specialists like Nathans think that the blue/yellow (B/Y) opposition evolved from single-celled organisms in which it controlled the circadian (day/night) response by signalling large spectral changes in the sun’s light.

  5. 5.

    Even though the names are the same, the colour labels of the cones should not be confused with those of the GCs. The mechanisms are not the same. The first refer to spectral absorption properties and the second to circuitry and a receptive field structure.

  6. 6.

    One voxel is typically \(2.5\times 2.5\times 3\) mm\(^3\) in fMRI.

  7. 7.

    Readers wishing to experiment with derivatives of Gaussians are referred to the Gaussian Derivative package of Mathematica, by Bart M. ter Haar Romeny and Markus van Almstick. These techniques in which derivatives of Gaussians are used as filters have applications in image compression (JPEG). See, for example, the reference books by Mallat [53] or Morgan et al. [54].

  8. 8.

    For the definition of \( L^{2}\left( \mathbb {R}\right) \) see below Sect. 3.4. \(H_{n}\left( x\right) \mathrm{e}^{-{x^{2}/2}}\) can be in \(L^{2}\left( \mathbb {R}\right) \) because \(\mathrm{e}^{-{x^{2}/2}}\) decreases more quickly at infinity than any polynomial can increase there.

  9. 9.

    This algorithm can be found today in any image-processing software.

  10. 10.

    The signals correspond to real-valued \(f\left( x\right) \). However, it is convenient also to allow the \(f\left( x\right) \) to be complex-valued. \(\overline{f}\left( x\right) \) is then the complex conjugate of \(f\left( x\right) \).

  11. 11.

    The \(\mathrm{e}^{I\omega x}\) are not actually in this Hilbert space, but we can ignore this well-known technical detail for our present purposes.

  12. 12.

    See also Mallat [53].

  13. 13.

    See, for example, Wickerhauser [68].

  14. 14.

    Named after Ludwig Otto Hesse.

  15. 15.

    \(\left\langle \ \right\rangle \) is the average over signals.

References

  1. Imbert, M.: Traité du Cerveau. Odile Jacob, Paris (2006)

    Google Scholar 

  2. Bioinformatics. http://www.bioinformatics.org/oeil-couleur/dossier/retine.html

  3. Brain. http://thebrain.mcgill.ca

  4. Thalamus. http://neurosci.wustl.edu

  5. Vision Web. http://webvision.med.utah.edu

  6. Vision. Accessible at http://jeanpetitot.com/Woodruff-Pak_vision.ppt

  7. Visual Cortex. http://www.vision.ee.ethz.ch/en/

  8. Visual system. http://brain.phgy.queensu.ca/pare/assets/Higher%20Processing%20handout.pdf Processing handout.pdf

  9. Buser, P., Imbert, M.: Vision. Hermann, Paris (1987)

    Google Scholar 

  10. Hooks, B.M., Chen, C.: Critical periods in the visual system: changing views for a model of experience-dependence plasticity. Neuron 56, 312–326 (2007)

    Google Scholar 

  11. Feldheim, D.A., O’Leary, D.D.: Visual map development: bidirectional signaling, bifunctional guidance, molecules and competition. Cold Spring Harb. Perspect. Biol. 2(11):a001768. https://doi.org/10.1101/cshperspect.a001768 (2010)

  12. Shapley, R., Perry, V.H.: Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci. 9, 229–235 (1986)

    Article  Google Scholar 

  13. Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behavior, pp. 549–586. MIT Press, Cambridge, MA (1982)

    Google Scholar 

  14. Barlow, H.B., Levick, W.R., Yoon, M.: Responses to single quanta of light in retinal ganglion cells of the cat. Vis. Res. Suppl. 3(11), 87–101 (1971)

    Article  Google Scholar 

  15. Hartline, H.K.: The receptive fields of optic nerve fibers. Am. J. Physiol. 130, 690–699 (1940)

    Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: Currents carried out sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  17. Arikawa, K., Molday, L.L., Molday, R.S., Williams, D.S.: Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J. Cell Biol. 116(3), 659–667 (1992)

    Google Scholar 

  18. Adler, R., Raymond, P.A.: Have we achieved a unified model of photoreceptor cell fate specification in vertebrates? Brain Res. 1192, 134–150 (2008)

    Article  Google Scholar 

  19. Jonnal, R.S., Besecker, J.R., Derby, J.C., Kocaoglu, O.P., Cense, B., Gao, W., Wang, Q., Miller, D.T.: Imaging outer segment renewal in living human cone photoreceptors. Opt. Express 18(5), 5257–5270 (2010)

    Article  Google Scholar 

  20. Hennig, A.K., Peng, G.-H., Chen, S.: Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res. 1192, 114–133 (2008)

    Article  Google Scholar 

  21. Kolb, H., Linberg, K.A., Fisher, S.K.: Neurons of the human retina: A Golgi study. J. Comp. Neurobiol. 318, 147–187 (1992)

    Article  Google Scholar 

  22. Lee, B.B., Wehrhahn, C., Westheimer, G., Kremers, J.: The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers. Vis. Res. 35(19), 2743–2758 (1995)

    Article  Google Scholar 

  23. Badea, T.C., Cahill, H., Ecker, J., Hattar, S., Nathans, J.: Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61, 852–864 (2009)

    Article  Google Scholar 

  24. Nathans, J., Thomas, D., Hogness, D.S.: Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232, 193–202 (1986)

    Google Scholar 

  25. Neitz, J., Neitz, M.: The genetics of normal and defective color vision. Vis. Res. 51, 633–651 (2011)

    Article  Google Scholar 

  26. Kuffler, S.W.: Discharge patterns and functional organisation of mammalian retina. J. Neurophysiol. 16, 37–68 (1953)

    Google Scholar 

  27. Frégnac, Y., Bringuier, V., Chavane, F., Glaeser, L., Lorenceau, J.: An intracellular study of space and time representation in primary visual cortical receptive fields. J. Physiol. 90, 189–197 (1996)

    Google Scholar 

  28. Frégnac, Y., Shulz, D.: Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. J. Neurobiol. 41(1), 69–82 (1999)

    Google Scholar 

  29. Seriès, P., Lorenceau, J., Frégnac, Y.: The ‘silent’ surround of \(V1\) receptive fields: theory and experiments. J. Physiol. Paris 97(4–6), 453–474 (2004)

    Google Scholar 

  30. Maffei, M., Fiorentini, A.: The unresponsive regions of visual cortical receptive fields. Vis. Res. 16, 1131–1139 (1976)

    Article  Google Scholar 

  31. Gilbert, C.D.: Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992)

    Article  Google Scholar 

  32. Lamme, V.A.F., Super, H., Speckreijse, H.: Feedforward, horizontal and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529–535 (1998)

    Article  Google Scholar 

  33. Butts, D.A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N.A., Alonso, J.-M., Stanley, G.B.: Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 (2007)

    Google Scholar 

  34. Thorpe, S.J., Guyonneau, R., Guilbaud, N., Allegraud, J.M., Vanrullen, R.: SpikeNet: real-time visual processing with one spike per neuron. Neurocomputing 58–60, 857–864 (2003)

    Google Scholar 

  35. DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–458 (1995)

    Article  Google Scholar 

  36. Somers, D.C., Nelson, S.B., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995)

    Google Scholar 

  37. Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D.: Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998)

    Google Scholar 

  38. Wörgötter, F., Koch, C.: A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. J. Neurosci. 11, 1959–1979 (1991)

    Google Scholar 

  39. Martinez, L.M., Alonso, J.-M.: Complex receptive fields in primary visual cortex. Neurosci. 9(5), 317–331 (2003)

    Google Scholar 

  40. Gilbert, C.D.: Circuitry, architecture and functional dynamics of visual cortex. In: Bock, G.R., Goode, J.A. (eds.) Higher Order Processing in The Visual System, Ciba Foundation Symposium, vol. 184, pp. 35–62. Wiley (1994)

    Google Scholar 

  41. Marcelja, S.: Mathematical description of the response of simple cortical cells. J. Opt. Soc. Am. 70, 1297–1300 (1980)

    Article  MathSciNet  Google Scholar 

  42. Kayser, A., Priebe, N.J., Miller, K.D.: Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. J. Neurophysiol. 85, 2130–2149 (2001)

    Google Scholar 

  43. Carandini, M., Ringach, D.L.: Predictions of a recurrent model of orientation selectivity. Vis. Res. 37, 3061–3071 (1997)

    Article  Google Scholar 

  44. Ben-Yishai, R., Bar-Or, R.L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. 92, 3844–3848 (1995)

    Google Scholar 

  45. McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A neuronal network model of macaque primary visual cortex (\(V1\)): orientation selectivity and dynamics in the input layer 4C\(\alpha \). Proc. Natl. Acad. Sci. 97(14), 8087–8092 (2000)

    Google Scholar 

  46. Cai, D., DeAngelis, G.C., Freeman, R.D.: Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78, 1045–1061 (1997)

    Google Scholar 

  47. Saul, A.B.: Lagged cells. Neurosignals 16, 209–225 (2008)

    Article  Google Scholar 

  48. Wandell, B.A., Winaver, J.: Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011)

    Article  Google Scholar 

  49. Dumoulin, S.O., Wandell, B.A.: Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660 (2008)

    Article  Google Scholar 

  50. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two dimensional visual cortical filters. J. Opt. Soc. Am. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  51. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1233–1258 (1987)

    Google Scholar 

  52. Bloom, J.A., Reed, T.R.: An uncertainty analysis of some real functions for image processing applications. In: International Conference on Image Processing, vol. 3, IEEE, pp. 670–672 (1997)

    Google Scholar 

  53. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1998)

    MATH  Google Scholar 

  54. Morgan, A.P., Watson, L.T., Young, R.A.: A Gaussian derivative based version of JPEG for image compression and decompression. IEEE Trans. Image Process. 7(9), 1311–1320 (1998)

    Article  Google Scholar 

  55. Young, R.A.: The Gaussian derivative model for spatial vision. Spat. Vis. 2(4), 273–293 (1987)

    Article  Google Scholar 

  56. Young, R.A., Lesperance, R.M., Meyer, W.W.: The Gaussian derivative model for spatio-temporal vision, I. Spat. Vis. 14(3–4), 261–319 (2001)

    Article  Google Scholar 

  57. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  58. Shapley, R.: Linear and nonlinear systems analysis of the visual system: why does it seem so linear? Vis. Res. 49, 907–921 (2009)

    Google Scholar 

  59. Florack, L.M.J.: The Syntactical Structure of Scalar Images. PhD Thesis, University of Utrecht (1993)

    Google Scholar 

  60. Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)

    Google Scholar 

  61. Hale, D.: Recursive Gaussian filters, Center for Wave Phenomena. Report 546, Colorado School of Mines (2006)

    Google Scholar 

  62. Marr, D.: Vision. W.H. Freeman, San Francisco (1982)

    Google Scholar 

  63. Beaudot, W.H.A., Mullen, K.T.: Orientation selectivity in luminance and color vision assessed using 2D band-pass filtered spatial noise. Vis. Res. 45, 687–695 (2005)

    Article  Google Scholar 

  64. Meyer, Y.: Ondelettes, filtres miroirs en quadrature et traitement numérique de l’image. Gazette des Mathématiciens 40, 31–42 (1989)

    MATH  Google Scholar 

  65. Mallat, S.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Article  Google Scholar 

  66. Mallat, S., Zhong, S.: Complete signal representation with multiscale edges. Technical Report no. 483, Department of Computer Sciences, New York University (1989)

    Google Scholar 

  67. Mallat, S., Peyré, G., Traitements géométriques des images par bandelettes. Journée annuelle de la SMF, Mathématiques et Vision, 39–67 (24 June 2006)

    Google Scholar 

  68. Wickerhauser, M.V.: Lectures on Wavelet Packet Algorithms. Technical Report, Department of Mathematics, Washington University (1991)

    Google Scholar 

  69. Hamy, H.: Méthodes géométriques multi-échelles en vision computationnelle. PhD Thesis, École Polytechnique, Paris (1997)

    Google Scholar 

  70. Atick, J.: Could information theory provide an ecological theory of sensory processing? Network 3, 213–251 (1992)

    Article  MATH  Google Scholar 

  71. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  72. Turiel, A., Nadal, J.-P., Parga, N.: Orientational minimal redundancy wavelets: from edge detection to perception. Vis. Res. 43(9), 1061–1079 (2003)

    Article  Google Scholar 

  73. Nirenberg, S., Carcieri, S.M., Jacobs, A.L., Latham, P.E.: Retinal ganglion cells act largely as independent encoders. Nature 411(7), 698–701 (2001)

    Article  Google Scholar 

  74. Olshausen, B.A., Field, D.J.: Sparse coding of sensory inputs. Cur. Opin. Neurobiol. 14, 481–487 (2004)

    Article  Google Scholar 

  75. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. http://www.icml2010.org/papers/449.pdf

  76. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Ann. Rev. Neurosci. 24, 1193–1216 (2001)

    Article  Google Scholar 

  77. Hyvärinen, A., Hoyer, P.O.: A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vis. Res. 41(18), 2413–2423 (2001)

    Article  Google Scholar 

  78. Berthoz, A.: Le sens du mouvement. Odile Jacob, Paris (1997)

    Google Scholar 

  79. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.-B.: Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006)

    Article  Google Scholar 

  80. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)

    Google Scholar 

  81. Muller, R.U.: A quarter of a century of place cells. Neuron 17, 979–990 (1996)

    Google Scholar 

  82. Muller, R.U., Bostock, E., Taube, J.S., Kubie, J.L.: On the directional firing properties of hippocampal place cells. J. Neurosci. 14(12), 7235–7251 (1994)

    Google Scholar 

  83. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(11), 801–806 (2005)

    Google Scholar 

  84. Doeller, C.F., Barry, C., Burgess, N.: Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010)

    Article  Google Scholar 

  85. Taube, J.S., Bassett, J.P.: Persistent neural activity in head direction cells. Cerebral Cortex 13, 1162–1172 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2017). Receptive Fields and Profiles, and Wavelet Analysis. In: Elements of Neurogeometry. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-65591-8_3

Download citation

Publish with us

Policies and ethics