Skip to main content

Probing for Trypanosoma cruzi Cell Surface Glycobiomarkers for the Diagnosis and Follow-Up of Chemotherapy of Chagas Disease

  • Chapter
  • First Online:
Book cover Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Abstract

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. Linear and branched O-glycans with non-reducing, terminal α-galactosyl (α-Gal) glycotopes located on cell surface glycosylphosphatidylinositol (GPI)-anchored mucins of the infective trypomastigote form of the parasite are foreign to humans and elicit high levels of anti-α-Gal antibodies in Chagas disease patients (Ch anti-α-Gal antibodies). These antibodies have the capability to lyse the parasite in a complement-dependent or -independent manner. Ch anti-α-Gal antibodies have a considerably higher reactivity to the parasitic surface α-Gal glycotopes than the normal human serum (NHS) anti-α-Gal antibodies, which are present in every healthy human being. A series of ten mercaptopropyl saccharides with α-Gal moieties at the non-reducing end, all connected to another galactose unit, and five non-α-Gal-containing glycan controls were synthesized, and conjugated to maleimide-derivatized bovine serum albumin. This produced neoglycoproteins (NGPs), which were assembled into glycoarrays for the interrogation with sera of chronic Chagas disease patients and healthy individuals using chemiluminescent enzyme-linked immunosorbent assay (CL-ELISA). This study identified the terminal Galα(1,3)Galβ disaccharide as an immunodominant T. cruzi glycotope and biomarker, which shows a considerable binding differential between Ch and NHS anti-α-Gal antibodies. Therefore, this glycotope is suitable for the diagnosis of Chagas disease, and could also be potentially used for follow-up studies for the effectiveness of chemotherapy in Chagas disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rassi A Jr, Rassi A, Marcondes de Rezende J (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin North Am 26:275–291

    Article  Google Scholar 

  2. Carod-Artal FJ, Gascon J (2010) Chagas disease and stroke. Lancet Neurol 9:533–542

    Article  Google Scholar 

  3. Gascon J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 115:22–27

    Article  Google Scholar 

  4. Jackson Y, Pinto A, Pett S (2014) Chagas disease in Australia and New Zealand: risks and needs for public health interventions. Trop Med Int Health 19:212–218

    Article  Google Scholar 

  5. Imai K, Maeda T, Sayama Y, Mikita K, Fujikura Y, Misawa K, Nagumo M, Iwata O, Ono T, Kurane I, Miyahira Y, Kawana A, Miura S (2014) Mother-to-child transmission of congenital Chagas disease. Japan Emerg Infect Dis 20:146–148

    Article  Google Scholar 

  6. Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, Schenkman S (2001) The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol Biochem Parasitol 114:143–150

    Article  CAS  Google Scholar 

  7. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4:229–236

    Article  CAS  Google Scholar 

  8. Acosta-Serrano A, Hutchinson C, Nakayasu ES, Almeida IC, Carrington M (2007) Comparison and evolution of the surface architecture of trypanosomatid parasites. In: Barry JD, Mottram JC, McCulloch R, Acosta-Serrano A (eds) Trypanosomes: after the genome. Horizon Scientific Press, Norwich, UK, pp 319–337

    Google Scholar 

  9. de Lederkremer RM, Agusti R (2009) Glycobiology of Trypanosoma cruzi. Adv Carbohydr Chem Biochem 62:311–366

    Article  Google Scholar 

  10. Mendonca-Previato L, Penha L, Garcez TC, Jones C, Previato JO (2013) Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J 30:659–666

    Article  CAS  Google Scholar 

  11. Almeida IC, Ferguson MA, Schenkman S, Travassos LR (1994) Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J 304(Pt 3):793–802

    Article  CAS  Google Scholar 

  12. Gazzinelli RT, Pereira ME, Romanha A, Gazzinelli G, Brener Z (1991) Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol 13:345–356

    Article  CAS  Google Scholar 

  13. Almeida IC, Milani SR, Gorin PA, Travassos LR (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol 146:2394–2400

    CAS  Google Scholar 

  14. Previato JO, Sola-Penna M, Agrellos OA, Jones C, Oeltmann T, Travassos LR, Mendonca-Previato L (1998) Biosynthesis of O-N-acetylglucosamine-linked glycans in Trypanosoma cruzi. Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine alpha1– > O-threonine. J Biol Chem 273:14982–14988

    Article  CAS  Google Scholar 

  15. Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA (1995) The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 270:27244–27253

    Article  CAS  Google Scholar 

  16. Previato JO, Jones C, Goncalves LP, Wait R, Travassos LR, Mendonca-Previato L (1994) O-glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi. Biochem J 301(Pt 1):151–159

    Article  CAS  Google Scholar 

  17. Galili U, Wang L, Temple DCL, Radic MZ (1999) The natural anti-Gal antibody. Sub-Cell. Biochem 32:79–106

    CAS  Google Scholar 

  18. Wilkinson SG (1996) Bacterial lipopolysaccharides—themes and variations. Prog Lipid Res 35:283–343

    Article  CAS  Google Scholar 

  19. Almeida IC, Krautz GM, Krettli AU, Travassos LR (1993) Glycoconjugates of Trypanosoma cruzi: a 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J Clin Lab Anal 7:307–316

    Article  CAS  Google Scholar 

  20. Soares RP, Torrecilhas AC, Assis RR, Rocha MN, Moura e Castro FA, Freitas GF, Murta SM, Santos SL, Marques AF, Almeida IC, Romanha AJ (2012) Intraspecies variation in Trypanosoma cruzi GPI-mucins: biological activities and differential expression of alpha-galactosyl residues. Am J Trop Med Hyg 87:87-96

    Google Scholar 

  21. Izquierdo L, Marques AF, Gallego M, Sanz S, Tebar S, Riera C, Quinto L, Aldasoro E, Almeida IC, Gascon J (2013) Evaluation of a chemiluminescent enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi infection in a nonendemic setting. Mem Inst Oswaldo Cruz 108:928–931

    Article  Google Scholar 

  22. De Marchi CR, Di Noia JM, Frasch AC, Amato Neto V, Almeida IC, Buscaglia CA (2011) Evaluation of a recombinant Trypanosoma cruzi mucin-like antigen for serodiagnosis of Chagas’ disease. Clin Vaccine Immunol 18:1850–1855

    Article  Google Scholar 

  23. Andrade AL, Martelli CM, Oliveira RM, Silva SA, Aires AI, Soussumi LM, Covas DT, Silva LS, Andrade JG, Travassos LR, Almeida IC (2004) Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up. Am J Trop Med Hyg 71:594–597

    CAS  Google Scholar 

  24. Almeida IC, Covas DT, Soussumi LM, Travassos LR (1997) A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 37:850–857

    Article  CAS  Google Scholar 

  25. de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM (1996) Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348:1407–1413

    Article  Google Scholar 

  26. Avila JL, Rojas M, Galili U (1989) Immunogenic Gal alpha 1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol. 142:2828–2834

    CAS  Google Scholar 

  27. Antas PR, Medrano-Mercado N, Torrico F, Ugarte-Fernandez R, Gomez F, Correa Oliveira R, Chaves AC, Romanha AJ, Araujo-Jorge TC (1999) Early, intermediate, and late acute stages in Chagas’ disease: a study combining anti-galactose IgG, specific serodiagnosis, and polymerase chain reaction analysis. Am J Trop Med Hyg 61:308–314

    Article  CAS  Google Scholar 

  28. Medrano-Mercado N, Luz MR, Torrico F, Tapia G, Van Leuven F, Araujo-Jorge TC (1996) Acute-phase proteins and serologic profiles of chagasic children from an endemic area in Bolivia. Am J Tro p Med Hyg 54:154–161

    Article  CAS  Google Scholar 

  29. Gonzalez J, Neira I, Gutierrez B, Anacona D, Manque P, Silva X, Marin S, Sagua H, Vergara U (1996) Serum antibodies to Trypanosoma cruzi antigens in Atacamenos patients from highland of northern Chile.Acta.Tro p 60:225–236

    Google Scholar 

  30. Avila JL, Rojas M, Velazquez-Avila G (1992) Characterization of a natural human antibody with anti-galactosyl(alpha 1-2)galactose specificity that is present at high titers in chronic Trypanosoma cruzi infection. Am J Trop Med Hyg 47:413–421

    Article  CAS  Google Scholar 

  31. Houseman BT, Gawalt ES, Mrksich M (2003) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19:1522–1531

    Article  CAS  Google Scholar 

  32. Ashmus RA, Schocker NS, Cordero-Mendoza Y, Marques AF, Monroy EY, Pardo A, Izquierdo L, Gallego M, Gascon J, Almeida IC, Michael K (2013) Potential use of synthetic alpha-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Org Biomol Chem 11:5579–5583

    Article  CAS  Google Scholar 

  33. Schocker NS, Portillo S, Brito CR, Marques AF, Almeida IC, Michael K (2016) Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. Glycobiology 26:39–50

    CAS  Google Scholar 

  34. Yang M, Dutta C, Tiwari A (2015) Disulfide-bond scrambling promotes amorphous aggregates in lysozyme and bovine serum albumin. J Phys Chem B 119:3969–3981

    Article  CAS  Google Scholar 

  35. Imamura A, Kimura A, Ando H, Ishida H, Kiso M (2006) Extended application of di-tert-butylsilylene-directed alpha-predominant galactosylation compatible with C2-participating groups toward the assembly of various glycosides. Chem Eur J 12:8862–8870

    Article  CAS  Google Scholar 

  36. Kimura A, Imamura A, Ando H, Ishida H, Kiso M (2006) A novel synthetic route to alpha-galactosyl ceramides and iGb3 using DTBS-directed alpha-selective galactosylation. Synlett 2379–2382

    Google Scholar 

  37. Stevenson DE, Furneaux RH (1996) Synthesis of allyl β-D-galactopyranoside from lactose using Streptococcus thermophilus β-D-galactosidase. Carbohydr Res 284:279–283

    Article  CAS  Google Scholar 

  38. Khamsi J, Ashmus RA, Schocker NS, Michael K (2012) A high-yielding synthesis of allyl glycosides from peracetylated glycosyl donors. Carbohydr Res 357:147–150

    Article  CAS  Google Scholar 

  39. Balcerzak AK, Ferreira SS, Trant JF, Ben RN (2012) Structurally diverse disaccharide analogs of antifreeze glycoproteins and their ability to inhibit ice recrystallization. Bioorg Med Chem Lett 22:1719–1721

    Article  CAS  Google Scholar 

  40. Murata S, Ichikawa S, Matsuda A (2005) Synthesis of galactose-linked uridine derivatives with simple linkers as potential galactosyltransferase inhibitors. Tetrahedron 61:5837–5842

    Article  CAS  Google Scholar 

  41. Matsuoka K, Oka H, Koyama T, Esumi Y, Terunuma D (2001) An alternative route for the construction of carbosilane dendrimers uniformly functionalized with lactose or sialyllactose moieties. Tetrahedron Lett 42:3327–3330

    Article  CAS  Google Scholar 

  42. Posner T (1905) Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Ber 38:646–657

    Google Scholar 

  43. Kononov LO, Kornilov AV, Sherman AA, Zyrianov EV, Zatonskiĭ GV, Shashkov AS, Nifant’ev NE (1998) Synthesis of oligosaccharides related to HNK-1 antigen. 2. Synthesis of 3’’’-O-(3-O-sulfo-beta-d-glucuronopyranosyl)-lacto-N-neotetraose beta-propylglycoside. Bioorg Khim 24:608–822

    CAS  Google Scholar 

  44. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA (1988) Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263:17755–17762

    CAS  Google Scholar 

  45. Litjens REJN, Hoogerhout P, Filippov DV, Codee JDC, Bos LJvd, Berg RJBHNvd, Overkleeft HS, Marel GAvd (2005) Synthesis of an alpha-Gal epitope α-d-Galp-(1-3)-β-d-Galp-(1-4)-β-GlcpNAc-lipid conjugate. J Carbohydr Chem 24:755–769

    Google Scholar 

  46. Brinkmann N, Malissard M, Ramuz M, Römer U, Schumacher T, Berger EG, Elling L, Wandrey C, Liese A (2001) Chemo-enzymatic synthesis of the galili epitope Galα(1→3)Galβ(1→4)GlcNAc on a homogeneously soluble PEG polymer by a multi-enzyme system. Bioorg Med Chem Lett 11:2503–2506

    Article  CAS  Google Scholar 

  47. Dahmén J, Magnusson G, Hansen HC (2002) Synthesis of the linear B type 2 trisaccharide Galα3Galβ4GlcNAcβOTMSEt, and coupling of the corresponding 2-carboxyethyl β-thioglycoside to sepharose. J Carbohydr Chem 21:1–12

    Article  Google Scholar 

  48. Plaza-Alexander P, Lowary TL (2013) Synthesis of trisaccharides incorporating the α-Gal antigen functionalized for neoglycoconjugate preparation. Arkivoc ii:112–122

    Google Scholar 

  49. Vic G, Hao T, Scigelova M, Crout DHG (1997) Glycosidase-catalysed synthesis of oligosaccharides: a one step synthesis of lactosamine and of the linear B type 2 trisaccharide alpha-d-Gal-(1,3)-beta-d-Gal-(1,4)-beta-d-GlcNAcSEt involved in the hyperacute rejection response in xenotransplantation from pigs to man and as the specific receptor for toxin A from Clostridium difficile. Chem Commun 169–170

    Google Scholar 

  50. Wang Y, Yan Q, Wu J, Zhang L-H, Ye X (2005) A new one-pot synthesis of α-Gal epitope derivatives involved in the hyperacute rejection response in xenotransplantation. Tetrahedron 61:4313–4321

    Article  CAS  Google Scholar 

  51. Hanessian S, Saavedra OM, Mascitti V, Marterer W, Oehrlein R, Mak C-P (2001) Practical syntheses of B disaccharide and linear B type 2 trisaccharide—non-primate epitope markers recognized by human anti-α-Gal antibodies causing hyperacute rejection of xenotransplants. Tetrahedron 57:3267–3280

    Article  CAS  Google Scholar 

  52. Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Zhang W, Yu L, Brew K, Wang PG (1998) Highly efficient chemoenzymatic synthesis of α-galactosyl epitopes with a recombinant α(1 → 3)-galactosyltransferase. J Am Chem Soc 120:6635–6638

    Article  CAS  Google Scholar 

  53. Danac R, Ball L, Gurr SJ, Muller T, Fairbanks AJ (2007) Carbohydrate Chain Terminators: Rational Design of Novel Carbohydrate-Based Antifungal Agents. ChemBioChem 8:1241–1245

    Article  CAS  Google Scholar 

  54. Gavard O, Hersant Y, Alais J, Duverger V, Dilhas A, Bascou A, Bonnaffé D (2003) Efficient preparation of three building blocks for the synthesis of heparan sulfate fragments: towards the combinatorial synthesis of oligosaccharides from hypervariable regions. Eur J Org Chem 3603–3620

    Google Scholar 

  55. Varela O, Cicero D, de Lederkremer RM (1989) A convenient synthesis of 4-thio-D-galactofuranose. J Org Chem 54:1884–1890

    Article  CAS  Google Scholar 

  56. Gallo-Rodriguez C, Varela O, de Lederkremer RM (1996) First synthesis of beta-D-Galf(1-4)GlcNAc, a structural unit attached O-glycosidically in glycoproteins of Trypanosoma cruzi. J Org Chem 61:1886–1889

    Article  CAS  Google Scholar 

  57. Crich D, Dudkin V (2001) Why are the hydroxyl groups of partially protected N-acetylglucosamine derivatives such poor glycosyl acceptors, and what can be done about it? J Am Chem Soc 123:6819–6825

    Article  CAS  Google Scholar 

  58. Galili U, Macher BA, Buehler J, Shohet SB (1985) Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1–3)-linked galactose residues. J Exp Med 162:573–582

    Article  CAS  Google Scholar 

  59. Pinazo MJ, Posada Ede J, Izquierdo L, Tassies D, Marques AF, de Lazzari E, Aldasoro E, Munoz J, Abras A, Tebar S, Gallego M, de Almeida IC, Reverter JC, Gascon J (2016) Altered Hypercoagulability Factors in Patients with Chronic Chagas Disease: Potential Biomarkers of Therapeutic Response. PLoS Negl. Trop. Dis. 10:e0004269

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R21AI07961801A1 and 1R21AI115451-01 (to ICA and KM) and Robert J. Kleberg Jr. and Helen C. Kleberg Foundation grants (to ICA, John VandeBerg, and KM). RAA is thankful for a Graduate Teaching Fellowship in K-12 Education (NSF grant DGE 0538623), NSS and AP for “Bridge to the Doctorate” scholarships (NSF grants HRD-1139929 and HRD-083295), and EYM for a MARC scholarship (NIH grant 5T34GM008048). ICA and CRNB were, respectively, Special Visiting Researcher and Visitor Ph.D. (Sandwich) Scholar of the Science Without Borders Program, Brazil. AFM is supported by the CNPq grant # 470737/2013-1. LI, MG and JG receive financial research support from the Generalitat de Catalunya (grant 2009SGR385). We are grateful to the Biomolecule Analysis Core Facility (BACF) at the University of Texas at El Paso (UTEP) for the access to several instruments used in this study. The BACF is supported by the grant # 2G12MD007592 (to Robert A. Kirken) from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor C. Almeida or Katja Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schocker, N.S. et al. (2018). Probing for Trypanosoma cruzi Cell Surface Glycobiomarkers for the Diagnosis and Follow-Up of Chemotherapy of Chagas Disease. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_9

Download citation

Publish with us

Policies and ethics