Abstract
Significant progress in the bioorthogonal field has resulted in the advent of a new type of prodrug: bioorthogonal prodrugs, i.e. metabolically stable precursors of therapeutic agents that are specifically activated by non-native, non-biological, non-perturbing physical or chemical stimuli. The application of such unique drug precursors in conjunction with their corresponding activating source is under preclinical experimentation as a novel way to elicit site-specific activation of cytotoxic drugs, with particular emphasis on anticancer glycosides. In this chapter, the strategies developed for the masking and bioorthogonal release of cytotoxic nucleosides using benign electromagnetic radiations, biocompatible click chemistry and bioorthogonal organometallic (BOOM) catalysis will be discussed in detail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stipanuk MH, Caudill MA (2012) Biochemical, physiological, and molecular aspects of human nutrition, 3rd edn. Saunders/Elsevier, Philadelphia
McNaught AD (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68:1919–2008
McNaught AD, Wilkinson A (eds) (1997) Compendium of chemical terminology the “gold book”, 2nd edn. International Union of Pure and Applied Chemistry. Blackwell Scientific Publications, Oxford
Kren V, Martínková L (2001) Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr Med Chem 8:1303–1328
Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19:670–686
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229
Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741
Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521
van Maanen JM, Retèl J, de Vries J, Pinedo HM (1988) Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst 80:1526–1533
Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF (2016) Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev 116:14379–14455
Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298
Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109:2880–2893
Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72
DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653
Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270
Huttunen KM, Raunio H, Rautio J (2008) Prodrugs-from serendipity to rational design. Pharmacol Rev 63:750–771
Kratz F, Müller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20–53
Rooseboom M, Commandeur JN, Vermeulen NP (2004) Enzyme-catalyzed activation of anticancerprodrugs. Pharmacol Rev 56:53–102
Yang Y, Aloysius H, Inoyama D, Chen Y, Hu L (2011) Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharmaceutica Sinica B 11:143–159
Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S (2014) β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 74:302–313
Haisma HJ, Boven E, van Muijen M, de Jong J, van der Vijgh WJ, Pinedo HM (1992) A monoclonal antibody-beta-glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for specific treatment of cancer. Br J Cancer 66:474–478
Mürdter TE, Sperker B, Kivistö KT, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer HK (1997) Enhanced uptake of Doxorubicin into bronchial carcinoma: β-glucuronidase mediates release of Doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res 57:2440–2445
Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84:550–557
Houba PH, Leenders RG, Boven E, Scheeren JW, Pinedo HM, Haisma HJ (1996) Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochem Pharmacol 52:455–463
Houba PH, Boven E, Erkelens CA, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (1998) The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. Br J Cancer 78:1600–1606
Bagshawe KD (1987) Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer 56:531–532
Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447
McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442
Chen Y, Hu L (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64
Hu L, Liu B, Hacking DR (2000) 5′-[2-(2-Nitrophenyl)-2-methylpropionyl]-2′-deoxy-5-fluorouridine as a potential bioreductively activated prodrug of FUDR: synthesis, stability and reductive activation. Bioorg Med Chem Lett 10:797–800
Liu B, Hu L (2003) 5′-(2-Nitrophenylalkanoyl)-2′-deoxy-5-fluorouridines as potential prodrugs of FUDR for reductive activation. Bioorg Med Chem 11:3889–3899
Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010
Agard NJ, Prescher J, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047
Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44:666–676
Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44:651–653
Weiss JT, Carragher NO, Unciti-Broceta A (2015) Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy. Sci Rep 5:9329
Weiss JT, Fraser C, Rubio-Ruiz B, Myers SH, Crispin R, Dawson JC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A (2015) N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Front Chem 2:56
Von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Münchner Med Wochenschr 47:2042–2044
Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1972) Photodynamic therapy of malignant tumours. Lancet 2:1175–1177
Doiron DR, Gomer CJ (1984) Porphyrin localization and treatment of tumors. AR Liss Inc, New York
Ward BG, Forbes IJ, Cowled PA, McEvoy MM, Cox LW (1982) The treatment of vaginal recurrences of gynecological malignancy with phototherapy following hematoporphyrin derivative pre-treatment. Am J Obstet Gynecol 142:356–357
Gomer CJ, Doiron DR, Jester JV, Szirth BC, Murphree AL (1983) Hematoporphyrin derivative photoradiation therapy for the treatment of intraocular tumors: examination of acute normal ocular toxicity. Cancer Res 43:721–727
Hill JS, Kaye AH, Sawyer WH, Morstyn G, Megison PD, Stylli SS (1990) Selective uptake of hematoporphyrin derivative into human cerebral glioma. Neurosurgery 26:248–254
Wenig BL, Kurtzman DM, Grossweiner LI, Mafee MF, Harris DM, Lobraico RV, Prycz RA, Appelbaum EL (1990) Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 116:1267–1270
Barr H, Krasner N, Boulos PB, Chatlani P, Bown SG (1990) Photodynamic therapy for colorectal cancer: a quantitative pilot study. Br J Surg 77:93–96
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905
Hendersonand B, Dougherty T (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157
Tietze LF, Müller M, Duefert SC, Schmuck K, Schuberth I (2013) Photoactivatable prodrugs of highly potent duocarmycin analogues for a selective cancer therapy. Chem Eur J 19:1726–1731
Horbert R, Pinchuk B, Davies P, Alessi D, Peifer C (2015) Photoactivatable prodrugs of anti-melanoma agent vemurafenib. ACS Chem Biol 10:2099–2107
Hossion AML, Bio M, Nkepang G, Awuah SG, You Y (2013) Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med Chem Lett 4:124–127
Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura K, Phillips DR, Cutts SM (2012) Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 83:1602–1612
Agudelo D, Bourassa P, Bérubé G (2014) Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol 66:144–150
Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR (2012) Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm 436:183–193
Mita MM, Natale RB, Wolin EM, Laabs B, Dinh H, Wieland S, Levitt DJ, Mita AC (2015) Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs 33:341–348
Ibsen S, Zahavy E, Wrasdilo W, Berns M, Chan M, Esener S (2010) A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res 27:1848–1860
Ibsen S, Zahavy E, Wrasidlo W, Hayashi T, Norton J, Su Y, Adams S, Esener S (2013) Localized in vivo activation of a photoactivatable doxorubicin prodrug in deep tumor tissue. Photochem Photobiol 89:698–708
Olejnik J, Sonar S, Krzymanska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci USA 92:7590–7594
Power DG, Kemeny NE (2009) The role of floxuridine in metastatic liver disease. Mol Cancer Therapeutics 8:1015–1025
Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3:415–424
Tobias SC, Borch RF (2001) Synthesis and biological studies of novel nucleoside phosphoramidate prodrugs. J Med Chem 44:4475–4480
Wei Y, Yan Y, Pei D, Gong B (1998) A photoactivated prodrug. Bioorganic Med Chem Lett 8:2419–2422
Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338
Schwartz EL, Baptiste N, Wadler S, Makower D (1995) Thymidine phosphorylase mediates the sensitivity of human colon-carcinoma cells to 5-fluorouracil. J Biol Chem 270:19073–19077
Dobritzsch D, Ricagno S, Schneider G, Schnackerz KD, Lindqvist Y (2002) Crystal structure of the productive ternary complex of dihydropyrimidine dehydrogenase with NADPH and 5-iodouracil. Implications for mechanism of inhibition and electron transfer. J Biol Chem 277:13155–13166
Nishimoto S, Hatta H, Ueshima H, Kagiya T (1992) 1-(5′-Fluoro-6′-hydroxy-5′,6′-dihydrouracil-5′-yl)-5-fluorouracil, a novel N(1)-C(5′)-linked dimer that releases 5-fluorouracil by radiation activation under hypoxic conditions. J Med Chem 35:2711–2712
Ito T, Tanabe K, Yamada H, Hatta H, Nishimoto S (2008) Radiation- and photo-induced activation of 5-fluorouracil prodrugs as a strategy for the selective treatment of solid tumors. Molecules 13:2370–2384
Zhang Z, Hatta H, Ito T, Nishimoto S (2005) Synthesis and photochemical properties of photoactivated antitumor prodrugs releasing 5-fluorouracil. Org Biomol Chem 3:592–596
Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727
Lin W, Peng D, Wang B, Long L, Guo C, Yuan J (2008) A model for light-triggered porphyrin anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur J Org Chem 793–796
Takiuchi H, Ajani JA (1998) Uracil-tegafur in gastric carcinoma: a comprehensive review. J Clin Oncol 16:2877–2885
Sinkel C, Greiner A, Agarwal S (2008) Synthesis, characterization, and properties evaluation of methylcoumarin end-functionalized poly(methyl methacrylate) for photoinduced drug release. Macromolecules 41:3460–3467
Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021
Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015
Agard N, Baskin J, Prescher J, Lo A, Bertozzi C (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648
Binder WH (2008) “Click”—chemistry in polymer and material science: the update. Macromol Rapid Commun 29:951
Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7:489–501
Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137
Lahann J (2009) Click chemistry for biotechnology and materials science. In: Click chemistry for biotechnology and materials science. Wiley, Chichester
Neibert K, Gosein V, Sharma A, Khan M, Whitehead MA, Maysinger D, Kakkar A (2013) “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm 10:2502–2508
Sevenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Delivery Rev 64:102–115
Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998
van Berkel SS, Dirks AT, Debets MF, van Delft FL, Cornelissen JJ, Nolte RJ, Rutjes FP (2007) Metal-free triazole formation as a tool for bioconjugation. ChemBioChem 8:1504–1508
McKay CS, Moran J, Pezacki JP (2010) Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. Chem Commun 46:931–933
Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519
Devaraj NK, Weissleder R (2011) Biomedical applications of tetrazine cycloadditions. Acc Chem Res 44:816–827
Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K (2012) Bioorthogonal copper-free Click Chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed 51:11836–11840
Hapuarachchige S, Zhu W, Kato Y, Artemov D (2014) Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics. Biomaterials 7:2346–2354
Brudno Y, Desai RM, Kwee BJ, Neel SJ, Aizenberg M, Mooney DJ (2015) In vivo targeting through Click Chemistry. ChemMedChem 10:617–620
Azoulay M, Tuffin G, Sallem W, Floret JC (2006) A new drug-release method using the Staudinger ligation. Bioorg Med Chem Lett 16:3147–3149
Carl PL, Chakravarty PK, Katzenellenbogen JA (1981) A novel connector linkage applicable in prodrug design. J Med Chem 24:479–480
van Brakel R, Vulders RC, Bokdam RJ, Grull H, Robillard MS (2008) A doxorubicin prodrug activated by the Staudinger reaction. Bioconjugate Chem 19:714–718
Gorska K, Manicardi A, Barluenga S, Winssinger N (2011) DNA-templated release of functional molecules with an azide-reduction-triggered immolative linker. Chem Commun 47:4364–4366
Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew Chem Int Ed 52:14112–14116
Bielski R, Witczak Z (2013) Strategies for coupling molecular units if subsequent decoupling is required. Chem Rev 113:2205–2243
Matikonda SS, Orsi DL, Staudacher V, Jenkins IA, Fiedler F, Chen J, Gamble AB (2015) Bioorthogonal prodrug activation driven by a strain-promoted 1,3-dipolar cycloaddition. Chem Sci 6:1212–1218
Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, Hoboken
Beller M, Bolm C (2008) Transition metals for organic synthesis: building blocks and fine chemicals, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim
Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830
Unciti-Broceta A, Johansson EM, Yusop RM, Sánchez-Martín RM, Bradley M (2012) Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells. Nat Protocols 7:1207–1218
Völker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25:48–54
Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12:129–137
Streu C, Meggers E (2006) Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed 45:5645–5648
Sasmal PK, Carregal-Romero S, Parak WJ, Meggers E (2012) Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments. Organometallics 31:5968–5970
Yusop RM, Unciti-Broceta A, Johansson EM, Sánchez-Martín RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3:239–243
Unciti-Broceta A, Yusop RM, Richardson PR, Walton JGA, Bradley M (2009) A fluorescein-derived anthocyanidin-inspired pH sensor. Tetrahedron Lett 50:3713–3715
Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sánchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5:3277
Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sánchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A (2014) Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 57:5395–5404
Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR (2014) Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 6:352–361
Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597–603
Unciti-Broceta A (2015) Bioorthogonal catalysis: rise of the nanobots. Nat Chem 7:538–539
Völker T, Dempwolff F, Graumann PL, Meggers E (2014) Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chem Int Ed Engl 53:10536–10540
Pérez-López AM, Rubio-Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaría J, Unciti-Broceta A (2017) Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed Engl 56. 10.1002/anie.201705609
Acknowledgements
BRR is grateful to the Alfonso Martín Escudero Foundation for a postdoctoral fellowship. T.L.B. is grateful to the University of Edinburgh for a Principal’s Career Development PhD Studentship and an Edinburgh Global Research Scholarship. A.P.L. and A.U.B. thank the MSD Scottish Life Sciences Fund for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Rubio-Ruiz, B., Bray, T.L., López-Pérez, A.M., Unciti-Broceta, A. (2018). Masking Strategies for the Bioorthogonal Release of Anticancer Glycosides. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-65587-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65586-4
Online ISBN: 978-3-319-65587-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)