Skip to main content

Cellular Automata for Clouds and Convection

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

Abstract

Numerical models of the global atmosphere have spatial resolutions that are much too coarse to resolve clouds and convection processes explicitly. Because these processes play an important role in the atmosphere and climate system, they are included in numerical models by means of simplified representations, so-called parameterizations. Traditional parameterization schemes for atmospheric convection are deterministic. To overcome the limitations of these deterministic schemes, stochastic parameterizations are being developed. The use of probabilistic cellular automata (PCA) for this application is very new and can provide a way to generate spatial patterns of convection as observed in the atmosphere. It is approached from two directions, both briefly reviewed here. In one approach, convection and other sub-grid-scale processes are represented with deterministic CA. In recent work, this is extended to PCA. In the other approach, convection is represented by means of discrete stochastic processes (finite state Markov chains) on a lattice. In most studies in this direction, there is no direct coupling between neighboring lattice nodes, however recently such couplings are considered as well. To illustrate the concept of parameterization, a frequently used test model (the L96 model) is discussed as well in this chapter. Parameterization of atmospheric convection and clouds with PCA has several interesting mathematical aspects. One is the interactive (two-way) coupling of the PCA to a partial differential equation for large-scale atmospheric flow. The state of the PCA couples to the time evolution of the flow, and in turn the PCA rules (transition probabilities) depend on the flow state. Furthermore, for convection it is natural to consider N-state PCAs with \(N > 2\) rather than a binary (\(N = 2\)) PCA. Finally, statistical inference can be a fruitful approach to construct the PCA rules or transition probabilities for convection. The PCA dependence on the time-evolving atmospheric flow and the large number of configurations for PCAs with \(N > 2\) provide interesting challenges for such inference.

This is a preview of subscription content, log in via an institution.

References

  1. Stephens, G.L.: Cloud feedbacks in the climate system: a critical review. J. Clim. 18, 237–273 (2005)

    Article  Google Scholar 

  2. Arakawa, A.: The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004)

    Article  Google Scholar 

  3. Randall, D., Khairoutdinov, M., Arakawa, A., Grabowski, W.: Breaking the cloud parameterization deadlock. B. Am. Meteorol. Soc. 84, 1547–1564 (2003)

    Article  Google Scholar 

  4. Tan, J., Jakob, C., Lane, T.P.: The consequences of a local approach in statistical models of convection on its large-scale coherence. J. Geophys. Res. Atmospheres 120, 931–944 (2015)

    Article  Google Scholar 

  5. Palmer, T.N.: A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 127, 279–304 (2001)

    Google Scholar 

  6. Palmer, T.N.: On parametrizing scales that are only somewhat smaller than the smallest resolved scales, with application to convection and orography. In: Proceedings of the ECMWF Workshop on New Insights and Approaches to Convective Parametrization, pp. 328–337 (1997)

    Google Scholar 

  7. Berner, J., Doblas-Reyes, F.J., Palmer, T.N., Shutts, G., Weisheimer, A.: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. R. Soc. A 366, 2561–2579 (2008)

    Article  MATH  Google Scholar 

  8. Shutts, G.: A stochastic kinetic energy backscatter algorithm for use in ensemble prediction systems. Technical Memorandum 449, ECMWF (2004)

    Google Scholar 

  9. Shutts, G.: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3102 (2005)

    Article  Google Scholar 

  10. Bengtsson, L., Körnich, H., Källén, E., Svensson, E.: Large-scale dynamical response to sub-grid-scale organization provided by cellular automata. J. Atmos. Sci. 68, 3132–3144 (2011)

    Article  Google Scholar 

  11. Bengtsson, L., Steinheimer, M., Bechtold, P., Geleyn, J.F.: A stochastic parametrization for deep convection using cellular automata. Q. J. R. Meteorol. Soc. 139, 1533–1543 (2013)

    Article  Google Scholar 

  12. Berner, J., Shutts, G., and Palmer, T.: Parameterising the multiscale structure of organised convection using a cellular automaton. In: ECMWF Workshop on Representation of Sub-grid Processes Using Stochastic-Dynamic Models, pp. 129–139 (2005)

    Google Scholar 

  13. Khouider, B., Biello, J., Majda, A.J.: A stochastic multicloud model for tropical convection. Commun. Math. Sci 8, 187–216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dorrestijn, J., Crommelin, D.T., Siebesma, A.P., Jonker, H.J.J.: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn. 27, 133–148 (2013)

    Article  Google Scholar 

  15. Dorrestijn, J., Crommelin, D.T., Biello, J.A., Böing, S.J.: A data-driven multicloud model for stochastic parameterization of deep convection. Philos. Trans. R. Soc. A 371(1991), 20120374 (2013)

    Article  Google Scholar 

  16. Gottwald, G.A., Peters, K., Davies, L.: A data-driven method for the stochastic parametrisation of subgrid-scale tropical convective area fraction. Q. J. R. Meteorol. Soc. 142, 349–359 (2016)

    Article  Google Scholar 

  17. Majda, A.J., Khouider, B.: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. 99, 1123–1128 (2002)

    Article  MATH  Google Scholar 

  18. Dorrestijn, J., Crommelin, D.T., Siebesma, A.P., Jonker, H.J.J., Jakob, C.: Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. J. Atmos. Sci. 72, 854–869 (2015)

    Article  Google Scholar 

  19. Crommelin, D., Vanden-Eijnden, E.: Subgrid-scale parameterization with conditional Markov chains. J. Atmos. Sci. 65, 2661–2675 (2008)

    Article  Google Scholar 

  20. Lorenz, E.N.: Predictability - a problem partly solved. In: Proceedings of the 1995 ECMWF Seminar on Predictability, ECMWF, Reading, UK, 118 (1996)

    Google Scholar 

  21. Pavliotis, G., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer (2008)

    Google Scholar 

  22. Khouider, B.: A coarse grained stochastic multi-type particle interacting model for tropical convection: nearest neighbour interactions. Comm. Math. Sci 12, 1379–1407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Richards, F.C., Meyer, T.P., Packard, N.H.: Extracting cellular automaton rules directly from experimental data. Physica D 45, 189–202 (1990)

    Article  MATH  Google Scholar 

  24. Adamatzky, A.I.: Identification of Cellular Automata. CRC Press (1994)

    Google Scholar 

  25. Billings, S.A., Yang, Y.: Identification of probabilistic cellular automata. IEEE Trans. Syst. Man Cybern. B Cybern. 33, 225–236 (2003)

    Article  Google Scholar 

  26. Sun, X., Rosin, P.L., Martin, R.R.: Fast rule identification and neighborhood selection for cellular automata. IEEE Trans. Syst. Man Cybern. B Cybern. 41, 749–760 (2011)

    Article  Google Scholar 

  27. Guo, Y., Billings, S.A., Coca, D.: Identification of N-state spatio-temporal dynamical systems using a polynomial model. Int. J. Bifurc. Chaos 18, 2049–2057 (2008)

    Article  MathSciNet  Google Scholar 

  28. De La Chevrotiere, M., Khouider, B., Majda, A.J.: Calibration of the stochastic multicloud model using Bayesian inference. SIAM J. Sci. Comput. 36, B538–B560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

DC is financially supported by the Netherlands Organisation for Scientific Research (NWO) through the Vidi project Stochastic models for unresolved scales in geophysical flows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Crommelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crommelin, D. (2018). Cellular Automata for Clouds and Convection. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics