Skip to main content

Contrasting Hydrologic Response in the Cuesta Landscapes of Luxembourg

Abstract

The Attert River basin in Luxembourg is characterised by a large variety of clean and mixed physiogeographical settings (i.e. topography, soil types, land use, bedrock geology, etc.). This in turn generates manifold configurations of rainfall-runoff transformation processes. Here, we provide experimental data from more than a decade of hydro-meteorological observations carried out in a nested catchment set-up, and develop on past and ongoing research on fundamental hydrological functions of catchments: water collection, storage and release. In a first section, we detail the characteristics of the Attert River basin and a set of 9 nested sub-catchments. The second section provides insights into the seasonal and spatial variability of hydrological responses along a wide range of landuse, soil and bedrock settings. The analysis of double-mass curves between precipitation and discharge provided insights into how certain physiogeographic characteristics control hydrological responses. In the third section, we develop on dynamic catchment storage and how it differs between catchments with contrasted landuse and lithology. The fourth section provides insights into the spatial and temporal variability of forest canopy and forest floor storage capacity. Given the considerable amount of precipitation that is intercepted at annual scale, the process is likely to have a substantial influence on catchment storage dynamics.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-65543-7_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-65543-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9

References

  • Aussenac G (1981) L’interception des précipitations par les peuplements forestiers. La Houille Blanche 7(8):531–536

    CrossRef  Google Scholar 

  • Black PE (1997) Watershed functions. J Am Water Resour Assoc 33:1–11

    CrossRef  Google Scholar 

  • Bouten W, Heimovaara TJ, Tiktak A (1992) Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand. Water Resour Res 28. doi:10.1029/92WR01764

  • Breuer L, Eckhardt K, Frede HG (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293

    CrossRef  Google Scholar 

  • Cammeraat LH (1992) Hydro-geomorphological processes in a small forested catchment: preferred flow paths of water. PhD-thesis, Amsterdam

    Google Scholar 

  • Duijsings JJHM (1985) Streambank contribution to the sediment budget of a forest stream, PhD. University of Amsterdam, Amsterdam

    Google Scholar 

  • Fenicia F (2008) Understanding catchment behaviour through model concept improvement. PhD thesis. Delft Technical University, The Netherlands. 138 pp

    Google Scholar 

  • Fenicia F, Savenije HHG, Matgen P, Pfister L (2007) A comparison of alternative multiobjective calibration strategies for hydrological modelling. Water Resour Res 43:W03434. doi:10.1029/2006WR005098

    CrossRef  Google Scholar 

  • Germer S, Elsenbeer H, Moraes JM (2006) Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondonia, Brazil). Hydrol Earth Syst Sci 10:383–393

    CrossRef  Google Scholar 

  • Gerrits AMJ, Savenije HHG, Hoffmann L, Pfister L (2007) New technique to measure forest floor interception—an application in a beech forest in Luxembourg. Hydrol Earth Syst Sci 11:695–701

    CrossRef  Google Scholar 

  • Gerrits AMJ, Savenije HHG, Pfister L (2009) Canopy and forest floor interception and transpiration measurements in a mountainous beech forest in Luxembourg. IAHS Redbook 326:18–24

    Google Scholar 

  • Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception. Hydrol Proc 24:3011–3025. doi:10.1002/hyp.7712

    CrossRef  Google Scholar 

  • Heidbüchel I, Troch PA, Lyon SW (2013) Separating physical and meteorological controls of variable transit times in zero-order catchments. Water Resour Res 49:7644–7657

    CrossRef  Google Scholar 

  • Hellebrand H, Hoffmann L, Juilleret J, Pfister L (2007) Assessing winter stormflow generation by means of permeability of the lithology and dominating runoff production processes. Hydrol Earth Syst Sci 11:1673–1682

    CrossRef  Google Scholar 

  • Herbst M, Rosier PT, McNeil DD, Harding RJ, Gowing DJ (2008) Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agric For Meteorol 148:1655–1667

    CrossRef  Google Scholar 

  • Hörmann G, Branding A, Clemen T, Herbst M, Hinrichs A, Thamm F (1996) Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agric For Meteorol 79:131–148

    CrossRef  Google Scholar 

  • Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrol Sci J 58:1198–1255

    CrossRef  Google Scholar 

  • Hutchings NJ, Milne R, Crowther JM (1988) Canopy storage capacity and its vertical distribution in a sitka spruce canopy. J Hydrol 104:161–171

    CrossRef  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. Rome, FAO

    Google Scholar 

  • Juilleret J, Iffly JF, Pfister L, Hissler C (2011) Remarkable pleistocene slope deposits in Luxembourg (Oesling): pedological implication and geosite potential. Bull Soc Nat Luxemb 112:125–130

    Google Scholar 

  • Juilleret J, Iffly JF, Hoffmann L, Hissler C (2012) The potential of soil survey as a tool for surface geological mapping: a case study in a hydrological experimental catchment (Huewelerbach, grand-duchy of Luxembourg). Geol Belgica 15:36–41

    Google Scholar 

  • Kittredge J (1948) Forest influences. McGraw-Hill Book Co, New York

    Google Scholar 

  • Klaassen W, Bosveld FC, de Water E (1998) Water storage and evaporation as constituents of rainfall interception. J Hydrol 36–50:212–213

    Google Scholar 

  • Martínez-Carreras N, Krein A, Udelhoven T, Gallart F, Iffly JF, Hoffmann L, Pfister L, Walling DE (2010a) A rapid spectral reflectance-based fingerprinting approach for documenting suspended sediment sources during storm runoff events. J Soils Sediments. doi:10.1007/s11368-009-0162-1

    Google Scholar 

  • Martínez-Carreras N, Udelhoven T, Krein A, Gallart F, Iffly JF, Ziebel J, Hoffmann L, Pfister L, Walling DE (2010b) The use of sediment colour measured with diffuse reflectance spectrometry to determine sediment sources: application to the Attert river basin (Luxembourg). J Hydrol. doi:10.1016/j.jhydrol.2009.12.017

    Google Scholar 

  • Matgen P, Henry J-B, Hoffmann L, Pfister L (2006) Assimilation of remotely sensed soil saturation levels in conceptual rainfall-runoff models. In: IAHS Red Book Series. Prediction in ungauged basins: promise and progress, IAHS Publication 303: 226–234

    Google Scholar 

  • Matgen P, Schumann G, Henry J-B, Hoffmann L, Pfister L (2007) Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int J Appl Earth Obs Geoinf 9:247–263

    CrossRef  Google Scholar 

  • McNamara JP, Tetzlaff D, Bishop K, Soulsby Ch, Seyfried M, Peters NE, Aulenbach BT, Hooper R (2011) Storage as a metric of catchment comparison. Hydrol Proc 25:3364–3371

    CrossRef  Google Scholar 

  • Pappenberger P, Matgen P, Beven K, Henry J-B, Pfister L, De Fraipont P (2006) Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv Water Resour 29:1430–1449

    CrossRef  Google Scholar 

  • Petit F, Kalombo K (1984) L’interception des pluies par différents types de couverts forestiers. Bull Soc Géogr Liège 20:99–127

    Google Scholar 

  • Pfister L, Humbert J, Iffly JF, Hoffmann L (2002) Use of regionalized stormflow coefficients in view of hydro-climatological hazard mapping. Hydrol Sci J 47:479–491

    CrossRef  Google Scholar 

  • Pfister L, Wagner C, Vansuypeene E, Drogue G, Hoffmann L (2005) Atlas climatique du grand-duché de Luxembourg. In: Ries C (ed) Musée National d’Histoire Naturelle, Soc Nat Luxemb, Centre de Recherche Public—Gabriel Lippmann, Administration des Services Techniques de l’Agriculture, Luxembourg, 79 p

    Google Scholar 

  • Pfister L, Hoffmann L, Iffly JF, Matgen P, Moquet A, Tailliez C, Vansuypeene E, Schoder R, Buchel D, Lepesant P, Wiltgen C, Ernst P, Kipgen R, Ripp C, Schleich G (2006) Atlas hydro-climatologique du Grand-Duché de Luxembourg 2005. Ministère de l’Agriculture, de la Viticulture et du Développement Rural, Ministère de l’Intérieur, Centre de Recherche Public-Gabriel Lippmann, 464 p

    Google Scholar 

  • Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L (2009) The rivers are alive: on the potential for diatoms as a tracer of water source and hydrological connectivity. Invited commentary. Hydrol Proc 23:2841–2845

    CrossRef  Google Scholar 

  • Pfister et al. (2017) Hydr Proc 31:1828–1845 doi:10.1002/hyp.11134

  • Rowe L (1983) Rainfall interception by an evergreen beech forest, Nelson, New Zealand. J Hydrol 66:143–158

    CrossRef  Google Scholar 

  • Rutter AJ, Morton AJ, Robins PC (1975) A predictive model of rainfall interception in forests. II Generalization of the model and comparison with observations in some coniferous and hardwood stands. J Appl Ecol 12:367–380

    CrossRef  Google Scholar 

  • Savenije HHG (1997) Determination of evaporation from a catchment water balance at a monthly time scale. Hydrol Earth Syst Sci 1:93–100

    CrossRef  Google Scholar 

  • Sayama T, McDonnell JJ, Dhakal A, Sullivan K (2011) How much water can a watershed store? Hydrol Proc 25:3899–3908

    CrossRef  Google Scholar 

  • Schumann G, Matgen P, Hoffmann L, Hostache R, Pappenberger F, Pfister L (2007) Deriving distributed roughness values from satellite radar data for flood inundation modelling. J Hydrol 344:96–111

    CrossRef  Google Scholar 

  • Viville D, Biron P, Granier A, Dambrine E, Probst A (1993) Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). J Hydrol 144:273–282

    CrossRef  Google Scholar 

  • Zehe E, Ehret U, Pfister L, Blume T, Schröder B, Westhoff M, Jackisch C, Schymanski SJ, Weiler M, Schulz K, Allroggen N, Tronicke J, van Schaik L, Dietrich P, Scherer U, Eccard J, Wulfmeyer V, Kleidon A (2014) HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrol Earth Syst Sci 18:4635–4655

    CrossRef  Google Scholar 

  • Zhang G, Zeng GM, Jiang YM, Huang GH, Li JB, Yao JM, Tan W, Xiang RJ, Zhang XL (2006) Modelling and measurement of two layer-canopy interception losses in a subtropical mixed forest of central-south China. Hydrol Earth Syst Sci 10:65–77

    CrossRef  Google Scholar 

  • Zinke PJ (1967) Forest interception studies in the United States. In: Sopper WE, Lull HW (eds) Forest hydrology. Pergamon Press, Oxford, pp 137–161

    Google Scholar 

Download references

Acknowledgements

Data and results presented in this chapter have been partially obtained through research projects funded in the framework of FNR (Fonds National de la Recherche du Luxembourg) programmes (CYCLEAU, STORE-AGE, CAOS-1, CAOS-2, SOWAT, BIGSTREAM, ECSTREAM). We acknowledge support during multiple field campaigns to Cyrille Taillez and Jérôme Juilleret at LIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pfister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pfister, L. et al. (2018). Contrasting Hydrologic Response in the Cuesta Landscapes of Luxembourg. In: Kooijman, A., Cammeraat, L., Seijmonsbergen, A. (eds) The Luxembourg Gutland Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-65543-7_4

Download citation