Demand Side Management Using Strawberry and Enhanced Differential Evolution Algorithms

Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 7)


Today, electricity is the most worthwhile resource which makes human life very easy. To overcome the gap among demand and supply of electricity, new techniques and methods are being explored. However, electricity demand is increasing constantly, which causes serious crisis. To tackle this problem, demand side management integrated with traditional grids through intercommunication between utility and customers. In this research work, we comparatively look over the two meta-heuristic algorithms: strawberry algorithm (SBA) and enhanced differential evolution (EDE) algorithm in terms of cost minimization, peak to average ratio reduction and maximizing user comfort. For electricity bill calculation, critical peak pricing (CPP) scheme is used. Simulation results show that both optimization techniques work significantly to achieve the desired objectives. SBA performs better then EDE in term of cost minimization while EDE performs better then SBA in terms of user comfort (UC) maximization, PAR reduction and energy consumption minimization.


Smart grid Demand side management Demand response Heuristic techniques Strawberry algorithm Enhanced differential evolution 


  1. 1.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: IEEE PES Innovat. Smart Grid Technol. (ISGT). Washington, DC 2012, pp. 1–5 (2012). doi: 10.1109/ISGT.2012.6175785
  2. 2.
    Ma, J., (Henry) Chen, H., Song, L., Li, Y.: IEEE Residential Load Scheduling in Smart Grid: A Cost Efficiency Perspective Digital Object Identifier. doi: 10.1109/TSG.2015.2419818
  3. 3.
    Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016). doi: 10.1109/TSG.2015.2435708 CrossRefGoogle Scholar
  4. 4.
    Afar, S., Brotcorne, L., Marcotte, P., Savard, G.: Achieving an optimal trade-off between revenue and energy peak within a smart grid environment. Renew. Energy 91, 293–301 (2016). doi: 10.1016/j.renene.2016.01.055. ISSN 0960–1481CrossRefGoogle Scholar
  5. 5.
    Khan, M.A., Javaid, N., Mahmood, A., Khan, Z.A., Alrajeh, N.: A generic demand-side management model for smart grid. doi: 10.1002/er.3304
  6. 6.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.-B.: An optimal power scheduling method for demand response in home energy management system digital object identifier 129, 452–470. doi: 10.1109/TSG.2013.2251018
  7. 7.
    Jalali, M.M., Kazemi, A.: Demand side management in a smart grid with multiple electricity suppliers. doi: 10.1016/
  8. 8.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016). doi: 10.1016/j.ijepes.2015.11.099. ISSN 0142–0615CrossRefGoogle Scholar
  9. 9.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10, 319 (2017)CrossRefGoogle Scholar
  10. 10.
    Rasheed, M.B., Javaid, N., Ahmad, A., Khan, Z.A., Qasim, U., Alrajeh, N.: An efficient power scheduling scheme for residential load management in smart homes. Appl. Sci. 5, 1134–1163 (2015). doi: 10.3390/app5041134 CrossRefGoogle Scholar
  11. 11.
    Mahmood, D., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U., Ahmed, I., Ilahi, M.: Realistic scheduling mechanism for smart homes. MDPI Energies 9, 1–28 (2016)Google Scholar
  12. 12.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  13. 13.
    Merrikh-Bayat, F.: A numerical optimization algorithm inspired by the strawberry plantGoogle Scholar
  14. 14.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI, TR-95-012, March 1995Google Scholar
  15. 15.
    Arafa, M., Sallam, E.A., Fahmy, M.M.: An enhanced differential evolution optimization algorithm. In: 2014 Fourth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 216–225. IEEE, May 2014Google Scholar
  16. 16.
    Gul, M.S., Patidar, S.: Understanding the energy consumption and occupancy of a multi-purpose academic building. Energy Build. 87, 155–165 (2015)CrossRefGoogle Scholar
  17. 17.
    Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in SG using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)CrossRefGoogle Scholar
  18. 18.
    Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 7(3), 381–388 (2011)CrossRefGoogle Scholar
  19. 19.
    Lam, J.C., Li, D.H.: Electricity consumption characteristics in shopping malls in subtropical climates. Energy Convers. Manage. 44(9), 1391–1398 (2003)CrossRefGoogle Scholar
  20. 20.
    Gellings, C.W., Chamberlin, J.H.: Demand-side management, vols. 1–5. EPRI, Palo Alto, CA (1988)Google Scholar
  21. 21.
    Hashmi, M., Hnninen, S., Mki, K.: Survey of smart grid concepts, architectures, and technological demonstrations worldwide. In: 2011 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America), pp. 1–7. IEEE, October 2011Google Scholar
  22. 22.
    Rahimi, F., Ipakchi, A.: Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid 1(1), 82–88 (2010)CrossRefGoogle Scholar
  23. 23.
    Ozturk, Y., Senthilkumar, D., Kumar, S., Lee, G.: An intelligent home energy management system to improve demand response. IEEE Trans. Smart Grid 4(2), 694–701 (2013)CrossRefGoogle Scholar
  24. 24.
    Chiu, W.-Y., Sun, H., Poor, H.V.: Energy imbalance management using a robust pricing scheme. IEEE Trans. Smart Grid 4(2), 896–904 (2013)CrossRefGoogle Scholar
  25. 25.
    California Energy Commission, Energy Efficiency and Conservation: Trends and Policy Issues, May 2003. Report No. 100–03-008FGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations