Advertisement

Meta-Heuristic and Nature Inspired Approaches for Home Energy Management

  • Zain Ul Abideen
  • Fouzia Jamshaid
  • Asma Zahra
  • Anwar Ur Rehman
  • Sidra Razzaq
  • Nadeem Javaid
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 7)

Abstract

In this paper, an energy management controller (EMC) is designed using three optimization techniques: harmony search algorithm (HSA), firefly algorithm (FA) and enhanced differential evolution (EDE). The objectives of this work are to minimize electricity cost as well as peak to average ratio (PAR) while maintaining the user comfort (UC). Critical peak pricing (CPP) is used for the calculation of electricity bill. The trade-off between UC and electricity cost is exploited in such a way that a stability is achieved among UC and electricity price that is preferred by the consumer. Reduction in PAR is beneficial for both consumer and utility as it provides stability to the electric grid.

References

  1. 1.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE, January 2012Google Scholar
  2. 2.
    Zhang, D., Evangelisti, S., Lettieri, P., Papageorgiou, L.G.: Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks. Energy Convers. Manag. 110, 113–124 (2016)CrossRefGoogle Scholar
  3. 3.
    Jaramillo, L.B., Weidlich, A.: Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads. Appl. Energy 169, 857–865 (2016)CrossRefGoogle Scholar
  4. 4.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.-B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  5. 5.
    Rajarajeswari, R., Vijayakumar, K., Modi, A.: Demand side management in smart grid using optimization technique for residential, commercial and industrial load. Indian J. Sci. Technol. 9(43) 2016Google Scholar
  6. 6.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Buildings 129, 452–470 (2016)CrossRefGoogle Scholar
  7. 7.
    Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 93(2), 481–502 (2017)CrossRefGoogle Scholar
  8. 8.
    Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)CrossRefGoogle Scholar
  9. 9.
    Muratori, M., Rizzoni, G.: Residential demand response: dynamic energy management and time-varying electricity pricing. IEEE Trans. Power Syst. 31(2), 1108–1117 (2016)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Yuen, C., Rong, Y., Zhang, Y., Xie, S.: Queuing-based energy consumption management for heterogeneous residential demands in smart grid. IEEE Trans. Smart Grid 7(3), 1650–1659 (2016)CrossRefGoogle Scholar
  11. 11.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  12. 12.
    Rasheed, M., Javaid, N., Ahmad, A., Khan, Z., Qasim, U., Alrajeh, N.: An efficient power scheduling scheme for residential load management in smart homes. Appl. Sci. 5(4), 1134–1163 (2015)CrossRefGoogle Scholar
  13. 13.
    Abushnaf, J., Rassau, A., Górnisiewicz, W.: Impact on electricity use of introducing time-of-use pricing to a multi-user home energy management system. Int. Trans. Electr. Energy Syst. 26(5), 993–1005 (2016)CrossRefGoogle Scholar
  14. 14.
    Northwest Power & Conservation Council. https://www.nwcouncil.org/. Accessed 09 Apr 2017
  15. 15.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  16. 16.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78 (2010)CrossRefGoogle Scholar
  17. 17.
    Arafa, M., Sallam, E.A., Fahmy, M.: An enhanced differential evolution optimization algorithm. In: 2014 Fourth International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), pp. 216–225. IEEE (2014)Google Scholar
  18. 18.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zafar, A., Shah, S., Khalid, R., Hussain, S.M., Rahim, H., Javaid, N.: A meta - heuristic home energy management systemGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Zain Ul Abideen
    • 1
  • Fouzia Jamshaid
    • 2
  • Asma Zahra
    • 1
  • Anwar Ur Rehman
    • 1
  • Sidra Razzaq
    • 1
  • Nadeem Javaid
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.National University of Modern LanguagesIslamabadPakistan

Personalised recommendations