CFTR and Cystic Fibrosis

  • Carlos M. FarinhaEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Cystic fibrosis (CF) is the most common autosomal recessive disorder in Caucasians and appears mostly in childhood. The first medical reports of CF symptoms date to the seventeenth century with descriptions of the meconium ileus but the condition was known previously with some medieval references such as the one that states: Woe to that child which when kissed on the forehead tastes salty. He is bewitched and soon must die.


  1. Abbattiscianni AC, Favia M, Mancini MT, Cardone RA, Guerra L, Monterisi S, Castellani S, Laselva O, Di Sole F, Conese M, Zaccolo M, Casavola V (2016) Correctors of mutant CFTR enhance subcortical cAMP-PKA signaling through modulating ezrin phosphorylation and cytoskeleton organization. J Cell Sci 129(6):1128–1140. doi: 10.1242/jcs.177907 CrossRefGoogle Scholar
  2. Ahner A, Gong X, Schmidt BZ, Peters KW, Rabeh WM, Thibodeau PH, Lukacs GL, Frizzell RA (2013) Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Mol Biol Cell 24(2):74–84. doi: 10.1091/mbc.E12-09-0678 CrossRefGoogle Scholar
  3. Aleksandrov AA, Kota P, Cui L, Jensen T, Alekseev AE, Reyes S, He L, Gentzsch M, Aleksandrov LA, Dokholyan NV, Riordan JR (2012) Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR. J Mol Biol 419(1–2):41–60. doi: 10.1016/j.jmb.2012.03.001 CrossRefGoogle Scholar
  4. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722. doi: 10.1126/science.1168750 CrossRefGoogle Scholar
  5. Alton EW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV, Boyd AC, Brand J, Buchan R, Calcedo R, Carvelli P, Chan M, Cheng SH, Collie DD, Cunningham S, Davidson HE, Davies G, Davies JC, Davies LA, Dewar MH, Doherty A, Donovan J, Dwyer NS, Elgmati HI, Featherstone RF, Gavino J, Gea-Sorli S, Geddes DM, Gibson JS, Gill DR, Greening AP, Griesenbach U, Hansell DM, Harman K, Higgins TE, Hodges SL, Hyde SC, Hyndman L, Innes JA, Jacob J, Jones N, Keogh BF, Limberis MP, Lloyd-Evans P, Maclean AW, Manvell MC, McCormick D, McGovern M, McLachlan G, Meng C, Montero MA, Milligan H, Moyce LJ, Murray GD, Nicholson AG, Osadolor T, Parra-Leiton J, Porteous DJ, Pringle IA, Punch EK, Pytel KM, Quittner AL, Rivellini G, Saunders CJ, Scheule RK, Sheard S, Simmonds NJ, Smith K, Smith SN, Soussi N, Soussi S, Spearing EJ, Stevenson BJ, Sumner-Jones SG, Turkkila M, Ureta RP, Waller MD, Wasowicz MY, Wilson JM, Wolstenholme-Hogg P, Consortium UKCFGT (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. doi: 10.1016/S2213-2600(15)00245-3
  6. Amaral MD (2015) Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J Intern Med 277(2):155–166. doi: 10.1111/joim.12314 CrossRefGoogle Scholar
  7. Amaral MD, Farinha CM (2013) Rescuing mutant CFTR: a multi-task approach to a better outcome in treating cystic fibrosis. Curr Pharm Des 19(19):3497–3508CrossRefGoogle Scholar
  8. Amaral MD, Farinha CM, Matos P, Botelho HM (2016) Investigating alternative transport of integral plasma membrane proteins from the ER to the golgi: lessons from the cystic fibrosis transmembrane conductance regulator (CFTR). Methods Mol Biol 1459:105–126. doi: 10.1007/978-1-4939-3804-9_7 CrossRefGoogle Scholar
  9. Ameen N, Silvis M, Bradbury NA (2007) Endocytic trafficking of CFTR in health and disease. J Cyst Fibr 6(1):1–14. doi: 10.1016/j.jcf.2006.09.002 CrossRefGoogle Scholar
  10. Antonarakis SE (1998) Recommendations for a nomenclature system for human gene mutations. Nomenclature working group. Hum Mutat 11(1):1–3. doi: 10.1002/(SICI)1098-1004(1998) 11:1 CrossRefGoogle Scholar
  11. Awatade NT, Uliyakina I, Farinha CM, Clarke LA, Mendes K, Sole A, Pastor J, Ramos MM, Amaral MD (2015) Measurements of Functional responses in human primary lung cells as a basis for personalized therapy for cystic fibrosis. EBioMedicine 2(2):147–153. doi: 10.1016/j.ebiom.2014.12.005 CrossRefGoogle Scholar
  12. Bannykh SI, Bannykh GI, Fish KN, Moyer BD, Riordan JR, Balch WE (2000) Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway. Traffic 1(11):852–870CrossRefGoogle Scholar
  13. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330):70–73CrossRefGoogle Scholar
  14. Bear CE, Li CH, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818CrossRefGoogle Scholar
  15. Bergeron JJ, Brenner MB, Thomas DY, Williams DB (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19(3):124–128CrossRefGoogle Scholar
  16. Blackledge NP, Ott CJ, Gillen AE, Harris A (2009) An insulator element 3’ to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells. Nucleic Acids Res 37(4):1086–1094. doi: 10.1093/nar/gkn1056 CrossRefGoogle Scholar
  17. Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78:1245–1252CrossRefGoogle Scholar
  18. Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM, Rietschel E, Huang X, Waltz D, Patel NR, Rodman D (2014) A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2(7):527–538. doi: 10.1016/S2213-2600(14)70132-8 CrossRefGoogle Scholar
  19. Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, Thomas PJ, Frizzell RA, Ford RC, Forman-Kay JD (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proc Natl Acad Sci U S A 110(47):E4427–E4436. doi: 10.1073/pnas.1315104110 CrossRefGoogle Scholar
  20. Bradbury NA, Jilling T, Berta G, Sorscher EJ, Bridges RJ, Kirk KL (1992) Regulation of plasma membrane recycling by CFTR. Science 256(5056):530–532CrossRefGoogle Scholar
  21. Broackes-Carter FC, Mouchel N, Gill D, Hyde S, Bassett J, Harris A (2002) Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Hum Mol Genet 11(2):125–131CrossRefGoogle Scholar
  22. Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ (1996) Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1(2):117–125CrossRefGoogle Scholar
  23. Cabral CM, Liu Y, Sifers RN (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci 26(10):619–624CrossRefGoogle Scholar
  24. Carveth K, Buck T, Anthony V, Skach WR (2002) Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J Biol Chem 277(42):39507–39514. doi: 10.1074/jbc.M205759200 CrossRefGoogle Scholar
  25. Chang XB, Hou YX, Riordan JR (1997) ATPase activity of purified multidrug resistance-associated protein [published erratum appears in J Biol Chem 1998 Mar 27; 273(13):7782]. J Biol Chem 272:30962–30968Google Scholar
  26. Chang X, Cui L, Hou Y, Jensen TJ, Aleksandrov AA, Mengos A, Riordan JR (1999) Removal of multiple arginine-framed trafficking signals overcomes misprocessing of ΔF508 CFTR present in most patients with cystic fibrosis. Mol Cell 4(1):137–142CrossRefGoogle Scholar
  27. Chen EY, Yang N, Quinton PM, Chin WC (2010) A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol 299(4):L542–L549. doi: 10.1152/ajplung.00180.2010 CrossRefGoogle Scholar
  28. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63(4):827–834CrossRefGoogle Scholar
  29. Cheng J, Wang H, Guggino WB (2004) Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL. J Biol Chem 279(3):1892–1898. doi: 10.1074/jbc.M308640200 CrossRefGoogle Scholar
  30. Chu CS, Trapnell BC, Curristin SM, Cutting GR, Crystal RG (1992) Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J Clin Invest 90(3):785–790CrossRefGoogle Scholar
  31. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160. doi: 10.1093/emboj/17.24.7151 CrossRefGoogle Scholar
  32. Cihil KM, Ellinger P, Fellows A, Stolz DB, Madden DR, Swiatecka-Urban A (2012) Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells. J Biol Chem 287(18):15087–15099. doi: 10.1074/jbc.M112.341875 CrossRefGoogle Scholar
  33. Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, Greer H, Hong J, Wing L, Macaluso M, Lyrene R, Sorscher EJ, Bedwell DM (2001) Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 163(7):1683–1692CrossRefGoogle Scholar
  34. Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, Ballmann M, Boyle MP, Bronsveld I, Campbell PW, Deboeck K, Donaldson SH, Dorkin HL, Dunitz JM, Durie PR, Jain M, Leonard A, McCoy KS, Moss RB, Pilewski JM, Rosenbluth DB, Rubenstein RC, Schechter MS, Botfield M, Ordonez CL, Spencer-Green GT, Vernillet L, Wisseh S, Yen K, Konstan MW (2011) Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax. doi: 10.1136/thoraxjnl-2011-200393 Google Scholar
  35. Clarke LA, Botelho HM, Sousa L, Falcao AO, Amaral MD (2015) Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 106(5):268–277. doi: 10.1016/j.ygeno.2015.07.005 CrossRefGoogle Scholar
  36. Coakley RD, Grubb BR, Paradiso AM, Gatzy JT, Johnson LG, Kreda SM, O'Neal WK, Boucher RC (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A 100(26):16083–16088. doi: 10.1073/pnas.2634339100 CrossRefGoogle Scholar
  37. Collaco A, Jakab R, Hegan P, Mooseker M, Ameen N (2010) Alpha-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine. J Biol Chem 285(22):17177–17187. doi: 10.1074/jbc.M110.127613 CrossRefGoogle Scholar
  38. Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779CrossRefGoogle Scholar
  39. Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR 3rd, Balch WE (2012) A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 7(5):e37682. doi: 10.1371/journal.pone.0037682 CrossRefGoogle Scholar
  40. Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A 88(20):9262–9266CrossRefGoogle Scholar
  41. Cushing PR, Fellows A, Villone D, Boisguerin P, Madden DR (2008) The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling. Biochemistry 47(38):10084–10098. doi: 10.1021/bi8003928 CrossRefGoogle Scholar
  42. Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56. doi: 10.1038/nrg3849 CrossRefGoogle Scholar
  43. Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19(4):176–181CrossRefGoogle Scholar
  44. Dahan D, Evagelidis A, Hanrahan JW, Hinkson DA, Jia Y, Luo J, Zhu T (2001) Regulation of the CFTR channel by phosphorylation. Pflugers Arch 443(Suppl 1):S92–S96. doi: 10.1007/s004240100652 CrossRefGoogle Scholar
  45. Dalemans W, Hinnrasky J, Slos P, Dreyer D, Fuchey C, Pavirani A, Puchelle E (1992) Immunocytochemical analysis reveals differences between the subcellular localization of normal and ΔPhe508 recombinant cystic fibrosis transmembrane conductance regulator. Exp Cell Res 201:235–240CrossRefGoogle Scholar
  46. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443(7108):180–185CrossRefGoogle Scholar
  47. De Boeck K, Amaral MD (2016) Progress in therapies for cystic fibrosis. Lancet Respir Med 4(8):662–674. doi: 10.1016/S2213-2600(16)00023-0 CrossRefGoogle Scholar
  48. Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EE, Houwen RH, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HG, de Winter-de Groot KM, Clevers H, van der Ent CK, Beekman JM (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Science Transl Med 8(344):344ra384. doi: 10.1126/scitranslmed.aad8278
  49. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358(6389):761–764CrossRefGoogle Scholar
  50. Devidas S, Guggino WB (1997) CFTR: domains, structure, and function. J Bioenerg Biomembr 29:443–451CrossRefGoogle Scholar
  51. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC, Collins FS, Frizzell RA, Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus- mediated gene transfer [published erratum appears in Cell 1993 Jun 16;74(1):215]. Cell 62:1227–1233CrossRefGoogle Scholar
  52. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254:1797–1799CrossRefGoogle Scholar
  53. Dupuit F, Kalin N, Brezillon S, Hinnrasky J, TÅmmler B, Puchelle E (1995) CFTR and differentiation markers expression in non-CF and ΔF508 homozygous CF nasal epithelium. J Clin Invest 96:1601–1611CrossRefGoogle Scholar
  54. Ellsworth RE, Jamison DC, Touchman JW, Chissoe SL, Braden MV, Bouffard GG, Dietrich NL, Beckstrom-Sternberg SM, Iyer LM, Weintraub LA, Cotton M, Courtney L, Edwards J, Maupin R, Ozersky P, Rohlfing T, Wohldmann P, Miner T, Kemp K, Kramer J, Korf I, Pepin K, Antonacci-Fulton L, Fulton RS, Green D (2000) Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Proc Natl Acad Sci U S A 97(3):1172–1177CrossRefGoogle Scholar
  55. Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2:240–248CrossRefGoogle Scholar
  56. Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM (1994) Expression of the cystic fibrosis gene in adult human lung. J Clin Invest 93:737–749CrossRefGoogle Scholar
  57. Enquist K, Fransson M, Boekel C, Bengtsson I, Geiger K, Lang L, Pettersson A, Johansson S, von Heijne G, Nilsson I (2009) Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. J Mol Biol 387(5):1153–1164. doi: 10.1016/j.jmb.2009.02.035 CrossRefGoogle Scholar
  58. Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6:1385–1388CrossRefGoogle Scholar
  59. Fanning AS, Anderson JM (1998) PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 228:209–233Google Scholar
  60. Farinha CM, Amaral MD (2005) Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 25(12):5242–5252. doi: 10.1128/MCB.25.12.5242-5252.2005 CrossRefGoogle Scholar
  61. Farinha CM, Canato S (2017) From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 74(1):39–55. doi: 10.1007/s00018-016-2387-7 CrossRefGoogle Scholar
  62. Farinha CM, Matos P (2016) Repairing the basic defect in cystic fibrosis—one approach is not enough. FEBS J 283(2):246–264. doi: 10.1111/febs.13531 CrossRefGoogle Scholar
  63. Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD (2002) The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem J 366(Pt 3):797–806CrossRefGoogle Scholar
  64. Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ, Roxo-Rosa M, Da Paula AC, Williams J, Hirst S, Gomes CM, Amaral MD (2013a) Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem Biol 20(7):943–955. doi: 10.1016/j.chembiol.2013.06.004 CrossRefGoogle Scholar
  65. Farinha CM, Matos P, Amaral MD (2013b) Control of CFTR membrane trafficking: not just from the ER to the golgi. FEBS J 280(18):4396–4406. doi: 10.1111/febs.12392 CrossRefGoogle Scholar
  66. Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P (2016) Regulatory crosstalk by protein kinases on CFTR trafficking and activity. Front Chem 4:1. doi: 10.3389/fchem.2016.00001 CrossRefGoogle Scholar
  67. Favia M, Guerra L, Fanelli T, Cardone RA, Monterisi S, Di Sole F, Castellani S, Chen M, Seidler U, Reshkin SJ, Conese M, Casavola V (2010) Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Mol Biol Cell 21(1):73–86. doi: 10.1091/mbc.E09-03-0185 CrossRefGoogle Scholar
  68. Ferrie RM, Schwarz MJ, Robertson NH, Vaudin S, Super M, Malone G, Little S (1992) Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am J Hum Genet 51(2):251–262Google Scholar
  69. Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15(12):2969–2979Google Scholar
  70. Fu L, Rab A, Tang LP, Rowe SM, Bebok Z, Collawn JF (2012) Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochem J 441(2):633–643. doi: 10.1042/BJ20111566 CrossRefGoogle Scholar
  71. Furukawa-Hagiya T, Furuta T, Chiba S, Sohma Y, Sakurai M (2013) The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations. J Phys Chem B 117(1):83–93. doi: 10.1021/jp308315w CrossRefGoogle Scholar
  72. Ganeshan R, Nowotarski K, Di A, Nelson DJ, Kirk KL (2007) CFTR surface expression and chloride currents are decreased by inhibitors of N-WASP and actin polymerization. Biochim Biophys Acta 1773(2):192–200. doi: 10.1016/j.bbamcr.2006.09.031 CrossRefGoogle Scholar
  73. Garcia MA, Yang N, Quinton PM (2009) Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 119(9):2613–2622. doi: 10.1172/JCI38662 CrossRefGoogle Scholar
  74. Gee HY, Noh SH, Tang BL, Kim KH, Lee MG (2011) Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146(5):746–760. doi: 10.1016/j.cell.2011.07.021 CrossRefGoogle Scholar
  75. Gentzsch M, Chang XB, Cui L, Wu Y, Ozols VV, Choudhury A, Pagano RE, Riordan JR (2004) Endocytic trafficking routes of wild type and ΔF508 cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(6):2684–2696. doi: 10.1091/mbc.E04-03-0176 [pii]CrossRefGoogle Scholar
  76. Gong X, Ahner A, Roldan A, Lukacs GL, Thibodeau PH, Frizzell RA (2016) Non-native conformers of cystic fibrosis transmembrane conductance regulator NBD1 are recognized by Hsp27 and conjugated to SUMO-2 for degradation. J Biol Chem 291(4):2004–2017. doi: 10.1074/jbc.M115.685628 CrossRefGoogle Scholar
  77. Grieve AG, Rabouille C (2011) Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb Perspect Biol 3(4). doi: 10.1101/cshperspect.a005298
  78. Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7(6):426–436. doi: 10.1038/nrm1949 CrossRefGoogle Scholar
  79. Haggie PM, Verkman AS (2008) Monomeric CFTR in plasma membranes in live cells revealed by single molecule fluorescence imaging. J Biol Chem 283(35):23510–23513. doi: 10.1074/jbc.C800100200 CrossRefGoogle Scholar
  80. Haggie PM, Kim JK, Lukacs GL, Verkman AS (2006) Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol Biol Cell 17(12):4937–4945. doi: 10.1091/mbc.E06-08-0670 CrossRefGoogle Scholar
  81. Hammond C, Helenius A (1995) Quality control in the secretory pathway. Curr Opin Cell Biol 7(4):523–529CrossRefGoogle Scholar
  82. He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR (2010) Restoration of domain folding and interdomain assembly by second-site suppressors of the ΔF508 mutation in CFTR. FASEB J 24(8):3103–3112. doi: 10.1096/fj.09-141788 CrossRefGoogle Scholar
  83. He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, Riordan JR (2013) Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 27(2):536–545. doi: 10.1096/fj.12-216119 CrossRefGoogle Scholar
  84. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81(3):425–433CrossRefGoogle Scholar
  85. Heda GD, Tanwani M, Marino CR (2001) The ΔF508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 280(1):C166–C174Google Scholar
  86. Higgins CF (1992a) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113CrossRefGoogle Scholar
  87. Higgins CF (1992b) Cystic fibrosis transmembrane conductance regulator (CFTR). Br Med Bull 48:754–765CrossRefGoogle Scholar
  88. Hohl M, Briand C, Grutter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19(4):395–402. doi: 10.1038/nsmb.2267 CrossRefGoogle Scholar
  89. Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446(7132):213–216CrossRefGoogle Scholar
  90. Hu W, Howard M, Lukacs GL (2001) Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator. Biochem J 354(Pt 3):561–572CrossRefGoogle Scholar
  91. Hug MJ, Tamada T, Bridges RJ (2003) CFTR and bicarbonate secretion by epithelial cells. News Physiol Sci 18:38–42Google Scholar
  92. Hwang TC, Sheppard DN (1999) Molecular pharmacology of the CFTR Cl- channel. Trends Pharmacol Sci 20(11):448–453CrossRefGoogle Scholar
  93. Hwang TC, Sheppard DN (2009) Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol 587(Pt 10):2151–2161. doi: 10.1113/jphysiol.2009.171595 CrossRefGoogle Scholar
  94. Igreja S, Clarke LA, Botelho HM, Marques L, Amaral MD (2016) Correction of a cystic fibrosis splicing mutation by antisense oligonucleotides. Hum Mutat 37(2):209–215. doi: 10.1002/humu.22931 CrossRefGoogle Scholar
  95. Illek B, Zhang L, Lewis NC, Moss RB, Dong JY, Fischer H (1999) Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277(4 Pt 1):C833–C839Google Scholar
  96. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135CrossRefGoogle Scholar
  97. Jiang C, Fang SL, Xiao YF, O'Connor SP, Nadler SG, Lee DW, Jefferson DM, Kaplan JM, Smith AE, Cheng SH (1998) Partial restoration of cAMP-stimulated CFTR chloride channel activity in ΔF508 cells by deoxyspergualin. Am J Physiol 275(1 Pt 1):C171–C178Google Scholar
  98. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: Identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276(46):42938–42944CrossRefGoogle Scholar
  99. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490(7421):566–569. doi: 10.1038/nature11448 CrossRefGoogle Scholar
  100. Johnson ZL, Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168(6):1075–1085. doi: 10.1016/j.cell.2017.01.041 (e1079)
  101. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898CrossRefGoogle Scholar
  102. Kalin N, Claass A, Sommer M, Puchelle E, Tummler B (1999) ΔF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest 103(10):1379–1389CrossRefGoogle Scholar
  103. Kanelis V, Hudson RP, Thibodeau PH, Thomas PJ, Forman-Kay JD (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and ΔF508 CFTR. EMBO J 29(1):263–277. doi: 10.1038/emboj.2009.329 CrossRefGoogle Scholar
  104. Kartner N, Augustinas O, Jensen TJ, Naismith AL, Riordan JR (1992) Mislocalization of ΔF508 CFTR in cystic fibrosis sweat gland. Nat Genet 1:321–327CrossRefGoogle Scholar
  105. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080CrossRefGoogle Scholar
  106. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P, Bronsveld I, Fajac I, Malfroot A, Rosenbluth DB, Walker PA, McColley SA, Knoop C, Quattrucci S, Rietschel E, Zeitlin PL, Barth J, Elfring GL, Welch EM, Branstrom A, Spiegel RJ, Peltz SW, Ajayi T, Rowe SM, Cystic Fibrosis Ataluren Study G (2014) Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2(7):539–547. doi: 10.1016/S2213-2600(14)70100-6
  107. Kim SJ, Skach WR (2012) Mechanisms of CFTR folding at the Endoplasmic Reticulum. Front Pharmacol 3:201. doi: 10.3389/fphar.2012.00201 Google Scholar
  108. Kim J, Noh SH, Piao H, Kim DH, Kim K, Cha JS, Chung WY, Cho HS, Kim JY, Lee MG (2016) Monomerization and ER relocalization of GRASP Is a requisite for unconventional secretion of CFTR. Traffic 17(7):733–753. doi: 10.1111/tra.12403 CrossRefGoogle Scholar
  109. Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5(2):76–86CrossRefGoogle Scholar
  110. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221:1067–1070CrossRefGoogle Scholar
  111. Kodan A, Yamaguchi T, Nakatsu T, Sakiyama K, Hipolito CJ, Fujioka A, Hirokane R, Ikeguchi K, Watanabe B, Hiratake J, Kimura Y, Suga H, Ueda K, Kato H (2014) Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc Natl Acad Sci U S A 111(11):4049–4054. doi: 10.1073/pnas.1321562111 CrossRefGoogle Scholar
  112. Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J. 22(9):1981–1989Google Scholar
  113. Koh J, Sferra TJ, Collins FS (1993) Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem 268:15912–15921Google Scholar
  114. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC (2005) Characterization of wild-type and ΔF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16(5):2154–2167. doi: 10.1091/mbc.E04-11-1010 CrossRefGoogle Scholar
  115. Kreda SM, Okada SF, van Heusden CA, O’Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584(Pt 1):245–259. doi: 10.1113/jphysiol.2007.139840 CrossRefGoogle Scholar
  116. Kunzelmann K, Mall M (2001) Pharmacotherapy of the ion transport defect in cystic fibrosis. Clin Exp Pharmacol Physiol 28(11):857–867CrossRefGoogle Scholar
  117. Kunzelmann K, Mehta A (2013) CFTR: a hub for kinases and cross-talk of cAMP and Ca. FEBS J. 280(18):4417–4429. doi: 10.1111/febs.12457 CrossRefGoogle Scholar
  118. Kunzelmann K, Schreiber R (1999) CFTR, a regulator of channels. J Membr Biol 168(1):1–8CrossRefGoogle Scholar
  119. Kunzelmann K, Schreiber R, Boucherot A (2001) Mechanisms of the inhibition of epithelial Na(+) channels by CFTR and purinergic stimulation. Kidney Int 60(2):455–461. doi: 10.1046/j.1523-1755.2001.060002455.x CrossRefGoogle Scholar
  120. Kuver R, Wong T, Klinkspoor JH, Lee SP (2006) Absence of CFTR is associated with pleiotropic effects on mucins in mouse gallbladder epithelial cells. Am J Physiol Gastrointest Liver Physiol 291(6):G1148–G1154. doi: 10.1152/ajpgi.00547.2005 CrossRefGoogle Scholar
  121. Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN Jr (1998) Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J Clin Invest 101(4):737–745CrossRefGoogle Scholar
  122. Leigh MW, Kylander JE, Yankaskas JR, Boucher RC (1995) Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients. Am J Respir Cell Mol Biol 12:605–612CrossRefGoogle Scholar
  123. Lewandowska MA, Costa FF, Bischof JM, Williams SH, Soares MB, Harris A (2010) Multiple mechanisms influence regulation of the cystic fibrosis transmembrane conductance regulator gene promoter. Am J Respir Cell Mol Biol 43(3):334–341. doi: 10.1165/rcmb.2009-0149OC CrossRefGoogle Scholar
  124. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23(2):282–293CrossRefGoogle Scholar
  125. Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the ΔF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280(2):1346–1353. doi: 10.1074/jbc.M410968200 CrossRefGoogle Scholar
  126. Li C, Ramjeesingh M, Reyes E, Jensen T, Chang X, Rommens JM, Bear CE (1993) The cystic fibrosis mutation (ΔF508) does not influence the chloride channel activity of CFTR. Nat Genet 3(4):311–316CrossRefGoogle Scholar
  127. Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, Virgilis D, Neu-Yilik G, Kulozik AE, Kerem E, Kerem B (2007) Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 117(3):683–692. doi: 10.1172/JCI28523 CrossRefGoogle Scholar
  128. Linsdell P, Hanrahan JW (1998) Glutathione permeability of CFTR. Am J Physiol. 275:C323–6Google Scholar
  129. Liu F, Zhang Z, Csanady L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR Ion channel. Cell 169(1):85–95 e88. doi: 10.1016/j.cell.2017.02.024
  130. Lobo MJ, Amaral MD, Zaccolo M, Farinha CM (2016) EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. J Cell Sci 129(13):2599–2612. doi: 10.1242/jcs.185629 CrossRefGoogle Scholar
  131. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296(5570):1091–1098. doi: 10.1126/science.1071142
  132. Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17(23):6879–6887CrossRefGoogle Scholar
  133. Loureiro CA, Matos AM, Dias-Alves A, Pereira JF, Uliyakina I, Barros P, Amaral MD, Matos P (2015) A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci Signal 8(377):ra48. doi: 10.1126/scisignal.aaa1580
  134. Lu Y, Xiong X, Helm A, Kimani K, Bragin A, Skach WR (1998) Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J Biol Chem 273(1):568–576CrossRefGoogle Scholar
  135. Lukacs GL, Chang XB, Kartner N, Rotstein OD, Riordan JR, Grinstein S (1992) The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J Biol Chem 267(21):14568–14572Google Scholar
  136. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993) The ΔF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268(29):21592–21598Google Scholar
  137. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13(24):6076–6086Google Scholar
  138. Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, Kunzelmann K, Farinha CM (2011) Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Molecular and cellular biology 31(22):4392–4404. doi: 10.1128/MCB.05517-11 CrossRefGoogle Scholar
  139. Luz S, Cihil KM, Brautigan DL, Amaral MD, Farinha CM, Swiatecka-Urban A (2014) LMTK2 mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells. J Biol Chem 289(21):15080–15093. doi: 10.1074/jbc.M114.563742 CrossRefGoogle Scholar
  140. Mall M, Wissner A, Schreiber R, Kuehr J, Seydewitz HH, Brandis M, Greger R, Kunzelmann K (2000) Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia. Am J Respir Cell Mol Biol 23(3):283–289CrossRefGoogle Scholar
  141. McNicholas CM, Nason MW Jr, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1997) A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. Am J Physiol 273(5 Pt 2):F843–F848Google Scholar
  142. Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 18(6):1492–1505CrossRefGoogle Scholar
  143. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105CrossRefGoogle Scholar
  144. Mendes AI, Matos P, Moniz S, Luz S, Amaral MD, Farinha CM, Jordan P (2011) Antagonistic Regulation of CFTR cell surface expression by protein kinases WNK4 and spleen tyrosine kinase. Mol Cell Biol 31(19):4076–4086. doi: 10.1128/MCB.05152-11 CrossRefGoogle Scholar
  145. Mendes F, Farinha CM, Felicio V, Alves PC, Vieira I, Amaral MD (2012) BAG-1 stabilizes mutant F508del-CFTR in a ubiquitin-like-domain-dependent manner. Cell Physiol Biochem 30(5):1120–1133. doi: 10.1159/000343303 CrossRefGoogle Scholar
  146. Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Cell 148(1–2):164–174. doi: 10.1016/j.cell.2011.11.023 CrossRefGoogle Scholar
  147. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182(10):1251–1261. doi: 10.1164/rccm.201004-0643OC CrossRefGoogle Scholar
  148. Miele L, Cordella-Miele E, Xing M, Frizzell R, Mukherjee AB (1997) Cystic fibrosis gene mutation (ΔF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol 16(6):749–759Google Scholar
  149. Mogayzel PJ Jr, Ashlock MA (2000) CFTR intron 1 increases luciferase expression driven by CFTR 5'-flanking DNA in a yeast artificial chromosome. Genomics 64(2):211–215. doi: 10.1006/geno.2000.6119 CrossRefGoogle Scholar
  150. Mohapatra NK, Cheng PW, Parker JC, Paradiso AM, Yankaskas JR, Boucher RC, Boat TF (1995) Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial cells. Pediatr Res 38:42–48CrossRefGoogle Scholar
  151. Moniz S, Sousa M, Moraes BJ, Mendes AI, Palma M, Barreto C, Fragata JI, Amaral MD, Matos P (2013) HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR. ACS Chem Biol 8(2):432–442. doi: 10.1021/cb300484r CrossRefGoogle Scholar
  152. Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65(16):2594–2612. doi: 10.1007/s00018-008-8249-1 CrossRefGoogle Scholar
  153. Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72(7):1377–1403. doi: 10.1007/s00018-014-1749-2 CrossRefGoogle Scholar
  154. Moskowitz SM, Chmiel JF, Sternen DL, Cheng E, Gibson RL, Marshall SG, Cutting GR (2008) Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med 10(12):851–868. doi: 10.1097/GIM.0b013e31818e55a2 CrossRefGoogle Scholar
  155. Mouchel N, Broackes-Carter F, Harris A (2003) Alternative 5' exons of the CFTR gene show developmental regulation. Hum Mol Genet 12(7):759–769CrossRefGoogle Scholar
  156. Nishimura N, Balch WE (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277(5325):556–558CrossRefGoogle Scholar
  157. Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40—a review. Int J Hyperthermia 16(3):231–245CrossRefGoogle Scholar
  158. Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, Young JC, Lukacs GL (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329(5993):805–810. doi: 10.1126/science.1191542 CrossRefGoogle Scholar
  159. Ott CJ, Blackledge NP, Kerschner JL, Leir SH, Crawford GE, Cotton CU, Harris A (2009a) Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. Proc Natl Acad Sci U S A 106(47):19934–19939. doi: 10.1073/pnas.0900946106 CrossRefGoogle Scholar
  160. Ott CJ, Blackledge NP, Leir SH, Harris A (2009b) Novel regulatory mechanisms for the CFTR gene. Biochem Soc Trans 37(Pt 4):843–848. doi: 10.1042/BST0370843 CrossRefGoogle Scholar
  161. Ott CJ, Suszko M, Blackledge NP, Wright JE, Crawford GE, Harris A (2009c) A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J Cell Mol Med 13(4):680–692CrossRefGoogle Scholar
  162. Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K (2011) CFTR and TMEM16A are separate but functionally related Cl- channels. Cell Physiol Biochem 28(4):715–724. doi: 10.1159/000335765 CrossRefGoogle Scholar
  163. Pankow S, Bamberger C, Calzolari D, Martinez-Bartolome S, Lavallee-Adam M, Balch WE, Yates JR 3rd (2015) F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528(7583):510–516. doi: 10.1038/nature15729 CrossRefGoogle Scholar
  164. Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139(2):620–631. doi: 10.1053/j.gastro.2010.04.004 CrossRefGoogle Scholar
  165. Pasyk S, Molinski S, Ahmadi S, Ramjeesingh M, Huan LJ, Chin S, Du K, Yeger H, Taylor P, Moran MF, Bear CE (2015) The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Proteomics 15(2–3):447–461. doi: 10.1002/pmic.201400218 CrossRefGoogle Scholar
  166. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS (2005) Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 115(9):2564–2571. doi: 10.1172/JCI24898 CrossRefGoogle Scholar
  167. Penque D, Mendes F, Beck S, Farinha C, Pacheco P, Nogueira P, Lavinha J, Malh¢ R, Amaral MD (2000) Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. Lab Invest 80(6):857–868CrossRefGoogle Scholar
  168. Phylactides M, Rowntree R, Nuthall H, Ussery D, Wheeler A, Harris A (2002) Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene. Eur J Biochem 269(2):553–559CrossRefGoogle Scholar
  169. Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784–12788Google Scholar
  170. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91(12):5340–5344CrossRefGoogle Scholar
  171. Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, Marchase RB, Collawn JF (1999) Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem 274(6):3602–3609CrossRefGoogle Scholar
  172. Puchelle E, Gaillard D, Ploton D, Hinnrasky J, Fuchey C, Boutterin MC, Jacquot J, Dreyer D, Pavirani A, Dalemans W (1992) Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol 7:485–491CrossRefGoogle Scholar
  173. Qu BH, Strickland EH, Thomas PJ (1997) Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J Biol Chem 272(25):15739–15744CrossRefGoogle Scholar
  174. Quinton PM (1990) Cystic fibrosis: a disease in electrolyte transport. FASEB J 4(10):2709–2717Google Scholar
  175. Quinton PM, Bijman J (1983) Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 308(20):1185–1189. doi: 10.1056/NEJM198305193082002 CrossRefGoogle Scholar
  176. Ramalho AS, Beck S, Meyer M, Penque D, Cutting G, Amaral MD (2002) 5% of normal CFTR mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol 27(5):619CrossRefGoogle Scholar
  177. Ramalho AS, Lewandowska MA, Farinha CM, Mendes F, Goncalves J, Barreto C, Harris A, Amaral MD (2009) Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem 24(5–6):335–346. doi: 10.1159/000257426 CrossRefGoogle Scholar
  178. Ramjeesingh M, Li C, Kogan I, Wang Y, Huan LJ, Bear CE (2001) A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator. Biochemistry 40(35):10700–10706CrossRefGoogle Scholar
  179. Ramjeesingh M, Ugwu F, Li C, Dhani S, Huan LJ, Wang Y, Bear CE (2003) Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Biochem J 375(Pt 3):633–641CrossRefGoogle Scholar
  180. Ramsey BW, Boat TF (1994) Outcome measures for clinical trials in cystic fibrosis. Summary of a cystic fibrosis foundation consensus conference. J Pediatr 124(2):177–192CrossRefGoogle Scholar
  181. Ranganathan R, Ross EM (1997) PDZ domain proteins: scaffolds for signaling complexes. CurrBiol 7:R770–R773CrossRefGoogle Scholar
  182. Reddy MM, Light MJ, Quinton PM (1999) Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature 402(6759):301–304. doi: 10.1038/46297 CrossRefGoogle Scholar
  183. Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM, McCann JD, Klinger KW, Smith AE, Welsh MJ (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347:358–363CrossRefGoogle Scholar
  184. Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630CrossRefGoogle Scholar
  185. Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718. doi: 10.1146/annurev.physiol.67.032003.154107 CrossRefGoogle Scholar
  186. Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726. doi: 10.1146/annurev.biochem.75.103004.142532 CrossRefGoogle Scholar
  187. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073CrossRefGoogle Scholar
  188. Romey MC, Pallares-Ruiz N, Mange A, Mettling C, Peytavi R, Demaille J, Claustres M (2000) A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. J Biol Chem 275(5):3561–3567CrossRefGoogle Scholar
  189. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui LC, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922):1059–1065CrossRefGoogle Scholar
  190. Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279(37):39051–39057. doi: 10.1074/jbc.M407434200 CrossRefGoogle Scholar
  191. Rosenstein BJ, Cutting GR (1998) The diagnosis of cystic fibrosis: a consensus statement. Cystic fibrosis foundation consensus panel. J Pediatr 132(4):589–595CrossRefGoogle Scholar
  192. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352(19):1992–2001. doi: 10.1056/NEJMra043184 CrossRefGoogle Scholar
  193. Rowntree RK, Vassaux G, McDowell TL, Howe S, McGuigan A, Phylactides M, Huxley C, Harris A (2001) An element in intron 1 of the CFTR gene augments intestinal expression in vivo. Hum Mol Genet 10(14):1455–1464CrossRefGoogle Scholar
  194. Roxo-Rosa M, Xu Z, Schmidt A, Neto M, Cai Z, Soares CM, Sheppard DN, Amaral MD (2006) Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Proc Natl Acad Sci U S A 103(47):17891–17896. doi: 10.1073/pnas.0608312103 CrossRefGoogle Scholar
  195. Rubenstein RC, Zeitlin PL (1998) Use of protein repair therapy in the treatment of cystic fibrosis. Curr Opin Pediatr 10(3):250–255CrossRefGoogle Scholar
  196. Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing ΔF508-CFTR. J Clin Invest 100(10):2457–2465CrossRefGoogle Scholar
  197. Ryan NJ (2014) Ataluren: first global approval. Drugs 74(14):1709–1714. doi: 10.1007/s40265-014-0287-4 CrossRefGoogle Scholar
  198. Ryley HC, Goodchild MC, Dodge JA (1992) Screening for cystic fibrosis. Br Med Bull 48(4):805–822CrossRefGoogle Scholar
  199. Sarkadi B, Bauzon D, Huckle WR, Earp HS, Berry A, Suchindran H, Price EM, Olson JC, Boucher RC, Scarborough GA (1992) Biochemical characterization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis epithelial cells. J Biol Chem 267:2087–2095Google Scholar
  200. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271(2):635–638CrossRefGoogle Scholar
  201. Sato S, Ward CL, Kopito RR (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J Biol Chem 273(13):7189–7192CrossRefGoogle Scholar
  202. Schillers H, Shahin V, Albermann L, Schafer C, Oberleithner H (2004) Imaging CFTR: a tail to tail dimer with a central pore. Cell Physiol Biochem 14(1–2):1–10Google Scholar
  203. Schneider E, Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22(1):1–20CrossRefGoogle Scholar
  204. Schultz BD, Frizzell RA, Bridges RJ (1999) Rescue of dysfunctional ΔF508-CFTR chloride channel activity by IBMX. J Membr Biol 170(1):51–66CrossRefGoogle Scholar
  205. Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79(1 Suppl):S145–S166Google Scholar
  206. Scott-Ward TS, Amaral MD (2009) Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. FEBS J 276(23):7097–7109. doi: 10.1111/j.1742-4658.2009.07421.x CrossRefGoogle Scholar
  207. Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci U S A 105(9):3256–3261. doi: 10.1073/pnas.0800254105 CrossRefGoogle Scholar
  208. Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, Bache KG, Papsin B, Zerangue N, Stenmark H, Lukacs GL (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164(6):923–933CrossRefGoogle Scholar
  209. Sharma N, LaRusch J, Sosnay PR, Gottschalk LB, Lopez AP, Pellicore MJ, Evans T, Davis E, Atalar M, Na CH, Rosson GD, Belchis D, Milewski M, Pandey A, Cutting GR (2016) A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Am J Physiol Lung Cell Mol Physiol 311(6):L1170–L1182. doi: 10.1152/ajplung.00363.2016 CrossRefGoogle Scholar
  210. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79(1 Suppl):S23–S45Google Scholar
  211. Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, Marsden BD, von Delft F, Bullock AN, Gileadi O, Burgess-Brown NA, Carpenter EP (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110(24):9710–9715. doi: 10.1073/pnas.1217042110 CrossRefGoogle Scholar
  212. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An Apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801CrossRefGoogle Scholar
  213. Shoshani T, Augarten A, Yahav J, Gazit E, Kerem B (1994) Two novel mutations in the CFTR gene: W1089X in exon 17B and 4010delTATT in exon 21. Hum Mol Genet 3:657–658CrossRefGoogle Scholar
  214. Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, Bradbury NA (2009) Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 20(8):2337–2350. doi: 10.1091/mbc.E08-01-0084 CrossRefGoogle Scholar
  215. Skach WR (2000) Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Kidney Int 57(3):825–831CrossRefGoogle Scholar
  216. Smith AN, Barth ML, McDowell TL, Moulin DS, Nuthall HN, Hollingsworth MA, Harris A (1996) A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. JBiolChem 271(17):9947–9954Google Scholar
  217. Smith SN, Delaney SJ, Dorin JR, Farley R, Geddes DM, Porteous DJ, Wainwright BJ, Alton EW (1998) Effect of IBMX and alkaline phosphatase inhibitors on Cl- secretion in G551D cystic fibrosis mutant mice. Am J Physiol 274(2 Pt 1):C492–C499Google Scholar
  218. Smith DJ, Nuthall HN, Majetti ME, Harris A (2000) Multiple potential intragenic regulatory elements in the CFTR gene. Genomics 64(1):90–96. doi: 10.1006/geno.1999.6086 CrossRefGoogle Scholar
  219. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, Ramalho AS, Amaral MD, Dorfman R, Zielenski J, Masica DL, Karchin R, Millen L, Thomas PJ, Patrinos GP, Corey M, Lewis MH, Rommens JM, Castellani C, Penland CM, Cutting GR (2013) Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet 45(10):1160–1167. doi: 10.1038/ng.2745 CrossRefGoogle Scholar
  220. Srinivasan V, Pierik AJ, Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343(6175):1137–1140. doi: 10.1126/science.1246729 CrossRefGoogle Scholar
  221. Strickland E, Qu BH, Millen L, Thomas PJ (1997) The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 272:25421–25424CrossRefGoogle Scholar
  222. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–850CrossRefGoogle Scholar
  223. Suaud L, Yan W, Carattino MD, Robay A, Kleyman TR, Rubenstein RC (2007) Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC. Am J Physiol Cell Physiol 292(4):C1553–C1561. doi: 10.1152/ajpcell.00064.2006 CrossRefGoogle Scholar
  224. Swiatecka-Urban A, Duhaime M, Coutermarsh B, Karlson KH, Collawn J, Milewski M, Cutting GR, Guggino WB, Langford G, Stanton BA (2002) PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 277(42):40099–40105. doi: 10.1074/jbc.M206964200 CrossRefGoogle Scholar
  225. Swiatecka-Urban A, Boyd C, Coutermarsh B, Karlson KH, Barnaby R, Aschenbrenner L, Langford GM, Hasson T, Stanton BA (2004) Myosin VI regulates endocytosis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 279(36):38025–38031. doi: 10.1074/jbc.M403141200 CrossRefGoogle Scholar
  226. Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, Stanton BA (2005) The short apical membrane half-life of rescued ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of ΔF508-CFTR in polarized human airway epithelial cells. J Biol Chem 280(44):36762–36772. doi: 10.1074/jbc.M508944200 CrossRefGoogle Scholar
  227. Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, Fukuda M, Stanton BA (2007) Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 282(32):23725–23736. doi: 10.1074/jbc.M608531200 CrossRefGoogle Scholar
  228. Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW (1991) Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628–631CrossRefGoogle Scholar
  229. Tatu U, Helenius A (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 136(3):555–565CrossRefGoogle Scholar
  230. Taubes G (1996) Misfolding the way to disease. Science 271(5255):1493–1495CrossRefGoogle Scholar
  231. The CFTR mutation database (2017).
  232. Thibodeau PH, Richardson JM, Wang W, Millen L, Watson JM, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ (2010) The cystic fibrosis-causing mutation ΔF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 285(46):35825–35835CrossRefGoogle Scholar
  233. Tian Y, Schreiber R, Kunzelmann K (2012) Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci 125(Pt 21):4991–4998. doi: 10.1242/jcs.109553 CrossRefGoogle Scholar
  234. Trapnell BC, Zeitlin PL, Chu CS, Yoshimura K, Nakamura H, Guggino WB, Bargon J, Banks TC, Dalemans W, Pavirani A (1991) Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem 266(16):10319–10323Google Scholar
  235. Trezise AE, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 353(6343):434–437CrossRefGoogle Scholar
  236. Trezise AE, Romano PR, Gill DR, Hyde SC, Sepulveda FV, Buchwald M, Higgins CF (1992) The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J 11:4291–4303Google Scholar
  237. Trinh NT, Bardou O, Prive A, Maille E, Adam D, Lingee S, Ferraro P, Desrosiers MY, Coraux C, Brochiero E (2012) Improvement of defective cystic fibrosis airway epithelial wound repair after CFTR rescue. Eur Respir J 40(6):1390–1400. doi: 10.1183/09031936.00221711 CrossRefGoogle Scholar
  238. Van Goor F, Straley KS, Cao D, Gonzalez J, Hadida S, Hazlewood A, Joubran J, Knapp T, Makings LR, Miller M, Neuberger T, Olson E, Panchenko V, Rader J, Singh A, Stack JH, Tung R, Grootenhuis PD, Negulescu P (2006) Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 290(6):L1117–L1130. doi: 10.1152/ajplung.00169.2005 CrossRefGoogle Scholar
  239. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106(44):18825–18830. doi: 10.1073/pnas.0904709106 CrossRefGoogle Scholar
  240. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108(46):18843–18848. doi: 10.1073/pnas.1105787108 CrossRefGoogle Scholar
  241. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, Hong JS, Pollard HB, Guggino WB, Balch WE, Skach WR, Cutting GR, Frizzell RA, Sheppard DN, Cyr DM, Sorscher EJ, Brodsky JL, Lukacs GL (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27(3):424–433. doi: 10.1091/mbc.E14-04-0935 CrossRefGoogle Scholar
  242. Wang H, Brautigan DL (2006) Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase. Mol Cell Proteomics 5(11):2124–2130. doi: 10.1074/mcp.M600188-MCP200 CrossRefGoogle Scholar
  243. Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C- terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett 427:103–108CrossRefGoogle Scholar
  244. Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S, Wilson IA, Riordan JR, Balch WE (2004) COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J Cell Biol 167(1):65–74. doi: 10.1083/jcb.200401035 CrossRefGoogle Scholar
  245. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815. doi: 10.1016/j.cell.2006.09.043 CrossRefGoogle Scholar
  246. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127CrossRefGoogle Scholar
  247. Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A 104(48):19005–19010. doi: 10.1073/pnas.0709388104 CrossRefGoogle Scholar
  248. Weixel KM, Bradbury NA (2000) The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. J Biol Chem 275(5):3655–3660CrossRefGoogle Scholar
  249. Weixel KM, Bradbury NA (2001) Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway. J Biol Chem 276(49):46251–46259. doi: 10.1074/jbc.M104545200 CrossRefGoogle Scholar
  250. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding [published erratum appears in Cell Stress Chaperones 1996 Sep; 1(3):207]. Cell Stress Chaperones 1(2):109–115CrossRefGoogle Scholar
  251. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73(7):1251–1254CrossRefGoogle Scholar
  252. Welsh MJ, Anderson MP, Rich DP, Berger HA, Denning GM, Ostedgaard LS, Sheppard DN, Cheng SH, Gregory RJ, Smith AE (1992) Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8:821–829CrossRefGoogle Scholar
  253. Welsh MJ, Ramsey BW, Accurso F, Cutting GR, Scriver CL, Beaudet AL, Sly WS, Valle D (2001) Cystic Fibrosis. The molecular and metabolic basis of inherited disease. McGraw-Hill, New York, pp 5121–5188Google Scholar
  254. Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A 93(24):13797–13801CrossRefGoogle Scholar
  255. Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145(3):481–490CrossRefGoogle Scholar
  256. Wilschanski M, Zielenski J, Markiewicz D, Tsui LC, Corey M, Levison H, Durie PR (1995) Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 127:705–710CrossRefGoogle Scholar
  257. Xiong X, Chong E, Skach WR (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J Biol Chem 274(5):2616–2624CrossRefGoogle Scholar
  258. Yang Y, Janich S, Cohn JA, Wilson JM (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci U S A 90(20):9480–9484CrossRefGoogle Scholar
  259. Yoo JS, Moyer BD, Bannykh S, Yoo HM, Riordan JR, Balch WE (2002) Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway. J Biol Chem 277(13):11401–11409CrossRefGoogle Scholar
  260. Yoshimura K, Nakamura H, Trapnell BC, Dalemans W, Pavirani A, Lecocq JP, Crystal RG (1991) The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem 266:9140–9144Google Scholar
  261. Younger JM, Ren HY, Chen L, Fan CY, Fields A, Patterson C, Cyr DM (2004) A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J Cell Biol 167(6):1075–1085CrossRefGoogle Scholar
  262. Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, Urrutia A, Joubran J, Seepersaud S, Sussky K, Hoffman BJ, Van Goor F (2012) Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibr 11(3):237–245. doi: 10.1016/j.jcf.2011.12.005 CrossRefGoogle Scholar
  263. Zeitlin PL (1999) Novel pharmacologic therapies for cystic fibrosis. J Clin Invest 103(4):447–452CrossRefGoogle Scholar
  264. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22(3):537–548CrossRefGoogle Scholar
  265. Zerhusen B, Zhao J, Xie J, Davis PB, Ma J (1999) A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J Biol Chem 274(12):7627–7630CrossRefGoogle Scholar
  266. Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167(6):1586–1597. doi: 10.1016/j.cell.2016.11.014 (e1589)
  267. Zhang F, Kartner N, Lukacs GL (1998) Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR. NatStructBiol 5(3):180–183Google Scholar
  268. Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA (2002) Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 277(32):28948–28958CrossRefGoogle Scholar
  269. Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry, BioISI—Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal

Personalised recommendations