Skip to main content

Invariant-Based Finite Strain Anisotropic Material Model for Fiber-Reinforced Composites

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

Abstract

Short fibre reinforced plastic (SFRP) materials are intensively used in several engineering sectors due to their excellent mechanical properties and production rates. In this investigation, an invariant-based transversely isotropic elasto-plastic model for finite strain applications and its corresponding numerical treatment are presented. The current model is based on the multiplicative decomposition of the deformation gradient. The main characteristic of the formulation is the mathematical realization of the incompressibility assumption with regard to the plastic behaviour in anisotropic finite strain setting. The proposed model is complying with thermodynamic restrictions and allows robust reliable numerical simulations. The accuracy of the model is verified by comparison against experimental data, showing a very satisfactory level of agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Advani, S.G., Tucker, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)

    Google Scholar 

  2. Advani, S.G., Talreja, R.: A continuum approach to determination of elastic properties of short fibre composites. Mech. Compos. Mater. 29(2), 171–183 (1993)

    Article  Google Scholar 

  3. Arif, M.F., Saintier, N., Meraghni, F., Fitoussi, J., Chemisky, Y., Robert, G.: Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Comp. Part B 61, 55–65 (2014)

    Article  Google Scholar 

  4. Bellenger, V., Tcharkhtchi, A., Castaing, P.: Thermal and mechanical fatigue of a PA66/glass fibers composite material. Int. J. Fatigue 28(10), 1348–1352 (2006)

    Google Scholar 

  5. Bernasconi, A., Cosmi, F., Hine, P.J.: Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos. Sci. Technol. 72(16), 2002–2008 (2012)

    Article  Google Scholar 

  6. Boehler, J.P.: Applications of tensor functions in solid mechanics. In: CISM Courses and Lectures, vol. 292. Springer (1987)

    Google Scholar 

  7. Dean, A., Reinoso, J., Sahraee, S., Rolfes, R.: An invariant-based anisotropic material model for short fiber-reinforced thermoplastics: coupled thermo-plastic formulation. Compos. Part A Appl. Sci. Manufact. 90, 186–199 (2016)

    Article  Google Scholar 

  8. Dean, A., Sahraee, S., Reinoso, J., Rolfes, R.: Finite deformation model for short fiber reinforced composites: application to hybrid metal-composite clinching joints. Compos. Struct. 151, 162–171 (2016)

    Article  Google Scholar 

  9. Dean, A., Sahraee, S., Reinoso, J., Rolfes, R.: A New invariant-based thermo-plastic model for finite deformation analysis of short fibre reinforced composites: development and numerical aspects. Compos. Part B Eng. 125, 241–258 (2017)

    Google Scholar 

  10. De Monte, M., Moosbugger, E., Quaresimin, M.: Inuence of temperature and thickness on the off-axis behaviour of short glass bre reinforced polyamide 6.6Quasi-static loading. Compos. Part A 41, 859–871 (2010)

    Google Scholar 

  11. De Monte, M., Moosbugger, E., Quaresimin, M.: Inuence of temperature and thickness on the off-axis behaviour of short glass bre reinforced polyamide 6.6Cyclic loading. Compos. Part A 41, 1368–79 (2010)

    Google Scholar 

  12. Eftekhari, M., Fatemi, A.: Tensile, creep and fatigue behaviors of short fiber reinforced polymer composites at elevated temperatures: a literature survey. Fatigue Fract. Eng. Mater. Struct. 38, 1395 (2015)

    Article  Google Scholar 

  13. Eidel, B., Gruttmann, F.: Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation. Comput. Mater. Sci. 28, 732–742 (2003)

    Google Scholar 

  14. Eidel, B.: Anisotropic Inelasticity: Modelling, Simulation, Validation. Ph.D. Dissertation, Technischen Universität Darmstadt, Darmstadt, Germany (2004)

    Google Scholar 

  15. Feyel, F., Chaboche, J-L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Computer Meth. in Appl. Mech. Eng. 183, 309–330 (2000)

    Google Scholar 

  16. Holzapfel, G. A.: Nonlinear Solid Mechanics. Wiley (2000). ISBN: 978-0-471-82319-3

    Google Scholar 

  17. Lu, S.C.H., Pister, K.D.: Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struct. 11, 927–934 (1975)

    Article  MATH  Google Scholar 

  18. Marco, Y., Le Saux, V., Jégou, L., Launay, A., Serrano, L., Raoult, I., Callot, S.: Dissipation analysis in SFRP structural samples: thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 67, 142–150 (2014)

    Article  Google Scholar 

  19. Menzel, A., Steinmann, P.: On the spatial formulation of anisotropic multiplicative elasto-plasticity. Comput. Methods Appl. Mech. Eng. 192, 3431–3470 (2003)

    Google Scholar 

  20. Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191, 5383–5425 (2002)

    Google Scholar 

  21. Mlekusch, B.: Thermoelastic properties of short-fibre-reinforced thermoplastics. Compos. Sci. Technol. 59, 911–923 (1999)

    Article  Google Scholar 

  22. Reese, S.: Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int. J. Solids Struct. 40(4), 951–980 (2003)

    Article  MATH  Google Scholar 

  23. Reinoso, J., Blázquez, A.: Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites. Compos. Struct. 139, 263–276 (2016)

    Article  Google Scholar 

  24. Sansour, C., Karsaj, I., Soric, J.: On a formulation for anisotropic elastoplasticity at finite strains invariant with respect to the intermediate configuration. J. Mech. Phys. Sol. 55, 2406–2426 (2007)

    Google Scholar 

  25. Schröder, J., Gruttmann, F., Löblein, J.: A simple orthotropic finite elastoplasticity model based on generalized stress strain measures. Comput. Mech. 30, 48–64 (2002)

    Google Scholar 

  26. Schröpfer, J.: Spritzgussbauteile aus kurzfaserverstärkten Kunststoffen: Methoden der Charakterisierung und Modellierung zur nichtlinearen Simulation von statischen und crashrelevanten Lastfällen. Dissertation Technischen Universit ät Kaiserslautern (2011)

    Google Scholar 

  27. Simo, J.C., Miehe, C.: Associative coupled thermoplasticity at finite strains: Formulation numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Google Scholar 

  28. Spahn, J., Andrä, H., Kabel, M., Muller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms Comput Method Appl. Mech. Eng. 268, 871–883 (2014)

    MATH  Google Scholar 

  29. Spencer, A.J.M.: Theory of invariants, In: Eringen, A.C. (Ed.), Continuum Physics, vol. 1, Academic Press, New York, 239–353 (1971)

    Google Scholar 

  30. Thi, T.B.N., Morioka, M., Yokoyama, A., Hamanaka, S., Yamashita, K., Nonomura, C.: Measurement of fiber orientation distribution in injection-molded short-glass- fiber composites using X-ray computed tomography. J. Mater. Process. Technol. 219, 1–9 (2015)

    Article  Google Scholar 

  31. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics, In: Flgge, S. (Ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  32. Vladimirov, I. N., Pietryga, M. P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plasticit. 0749–6419, 26, 659–687 (2010)

    Google Scholar 

  33. Vogler, M., Rolfes, R., Camanho, P.P.: Modeling the inelastic deformation and fracture of polymer composites part I: plasticity model. Mech. Mater. 59, 50–64 (2013)

    Google Scholar 

  34. Zohdi, T., Wriggers, P.: Aspects of the computational testing of properties of microheterogeneous material samples. Inter. J. Meth. Eng. 50, 2573–2599 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) through the program SPP 1640 (joining by plastic deformation) under the contract No. RO 706/6-2. JR is also grateful to the Spanish Ministry of Economy and Competitiveness (Projects MAT2015-71036-P and MAT2015-71309-P) and the Andalusian Government (Project of Excellence No. TEP-7093). AD gratefully acknowledges the support of Mr. and Mrs. Dean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Dean .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix addresses the weak formulation of the IBVP presented in Eq. (6) (Sect. 2), which represents the most convenient setting to formulate the corresponding numerical approximation based on FEM (Finite Element Method) through the exploitation of the standard Galerkin procedure.

Assume that the reference body boundary \(\partial \mathscr {B}_{0}\) is subdivided into the disjointed parts \(\partial \mathscr {B}_{0,u}\subset \partial \mathscr {B}_{0}\) and \(\partial \mathscr {B}_{0,t}\subset \partial \mathscr {B}_{0}\), with \(\partial \mathscr {B}_{0}=\partial \mathscr {B}_{0,u}\cup \partial \mathscr {B}_{0,t}\) and \(\partial \mathscr {B}_{0,u}\cap \partial \mathscr {B}_{0,t}=\emptyset \). As customary, appropriate boundary conditions must be defined in order to guarantee the well-posedness of the IBVP. The weak form of the balance of linear momentum reads:

$$\begin{aligned}&G^{u}\left( \mathbf {u}, \delta \mathbf {u}\right) = \int _{\mathscr {B}_{0}}\left( \mathrm {DIV}\left[ \mathbf {P}\right] + \bar{ \varvec{\Upsilon }} \right) \delta \mathbf {u}\mathrm {d}\mathrm {V} = \int _{\mathscr {B}_{0}}\left( \mathrm {DIV}\left[ \delta \mathbf {u}\mathbf {P}\right] -\mathbf {P}:\nabla _{\mathbf {X}}\delta \mathbf {u}+ \bar{ \varvec{\Upsilon }} \delta \mathbf {u}\right) \mathrm {d}\mathrm {V}\nonumber \\&= \int _{\mathscr {B}_{0}}\mathbf {P}:\delta \mathbf {F}\mathrm {d}\mathrm {V}-\int _{\partial \mathscr {B}_{0}}\mathbf {T} \delta \mathbf {u}\mathrm {d}\mathrm {A}- \int _{\mathscr {B}_{0}} \bar{ \varvec{\Upsilon }} \delta \mathbf {u}\mathrm {d}\mathrm {V}=G_{int}^{u}+G_{ext}^{u}=0, \end{aligned}$$
(105)

where \(\delta \mathbf {u}\) renders the virtual displacement and \(\delta \mathbf {F}=\nabla _{\mathbf {X}}\delta \mathbf {u}\) and \(\mathbf {T}=\mathbf {P}\mathbf {N}\) denotes the first Piola-Kirchhoff traction vector. Note that to achieve the present form of Eq. 105, the following rules are used:

$$\begin{aligned} \mathrm {DIV}\left[ \mathbf {P}\right] \delta \mathbf {u}=\mathrm {DIV}\left[ \delta \mathbf {u}\mathbf {P}\right] -\mathbf {P}:\nabla _{\mathbf {X}}\delta \mathbf {u}, \end{aligned}$$
(106)

and the Gauss-Green theorem:

$$\begin{aligned} \int _{\mathscr {B}_{0}}\mathrm {DIV}\left[ \delta \mathbf {u}\mathbf {P}\right] \mathrm {d}\mathrm {V}=\int _{\partial \mathscr {B}_{0}}\left( \mathbf {P}\mathbf {N}\right) \delta \mathbf {u}\mathrm {d}\mathrm {A}. \end{aligned}$$
(107)

The virtual internal work \(G_{int}^{u}\) and the virtual work of external actions \(G_{ext}^{u}\) are given by:

$$\begin{aligned} G_{int}^{u}\left( \mathbf {u}, \delta \mathbf {u}\right) =\int _{\mathscr {B}_{0}}\mathbf {P}:\delta \mathbf {F}\mathrm {d}\mathrm {V}, \end{aligned}$$
(108)
$$\begin{aligned} G_{ext}^{u}\left( \mathbf {u}, \delta \mathbf {u}\right) =-\int _{\partial \mathscr {B}_{0}}\mathbf {T}\delta \mathbf {u}\mathrm {d}\mathrm {A}-\int _{\mathscr {B}_{0}} \bar{ \varvec{\Upsilon }}\delta \mathbf {u}\mathrm {d}\mathrm {V}. \end{aligned}$$
(109)

The resulting set of nonlinear equations of the mechanical problem, Eq. 105, can be solved numerically through the use of the incremental and iterative Newton-Raphson solution scheme, which shows a quadratic convergence near the solution point. The consistent linearization of the given time integration algorithm, also called stress-update algorithm, leads to the derivation of the consistent tangent moduli, which describes in an incremental manner the stress sensitivity with respect to the deformation gradient increment. Following the directional derivative concept [16], the consistent linearization of Eq. 105 takes the following representation:

$$\begin{aligned} \mathrm {Lin}\left[ G^{u}\left( \bar{\mathbf {u}},\delta \mathbf {u},\Delta \mathbf {u}\right) \right]= & {} G^{u}\left( \bar{\mathbf {u}},\delta \bar{\mathbf {u}}\right) +DG^{u}\left( \bar{\mathbf {u}},\delta \mathbf {u}\right) \Delta \mathbf {u}. \end{aligned}$$
(110)

In Eq. 105, the term \(\mathbf {P}:\delta \mathbf {F}\) has to be linearized yielding:

$$\begin{aligned} \Delta \left( \mathbf {P}:\delta \mathbf {F}\right) =\Delta \mathbf {P}:\delta \mathbf {F}, \end{aligned}$$
(111)

where \(\Delta \mathbf {P}\) is derived in Sect. 4.2, with:

$$\begin{aligned} \Delta \mathbf {P}=\Delta \left( \mathbf {F}\mathbf {S}\right) =\mathbb {C}^{ep}:\Delta \mathbf {F}, \end{aligned}$$
(112)

where \(\mathbb {C}^{ep}\) denotes the algorithmic elasto-plastic constitutive operator.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dean, A., Reinoso, J., Sahraee, S., Daum, B., Rolfes, R. (2018). Invariant-Based Finite Strain Anisotropic Material Model for Fiber-Reinforced Composites. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics