Advertisement

A Micromorphic Damage-Plasticity Model to Counteract Mesh Dependence in Finite Element Simulations Involving Material Softening

  • Tim Brepols
  • Stephan Wulfinghoff
  • Stefanie Reese
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 86)

Abstract

A gradient-extended damage-plasticity material model is presented which belongs to the class of micromophic media as proposed by Forest (J Eng Mech 135:117–131, 2009) [17]. A ‘two-surface’ formulation is utilized in which damage and plasticity are treated as independent but strongly coupled dissipative phenomena. To this end, separate yield and damage criteria as well as loading/unloading conditions are introduced. The model is thermodynamically consistent and accounts for both nonlinear kinematic and isotropic hardening as well as damage hardening. Various theoretical and numerical aspects of the formulation are discussed. Emphasis is also put on a procedure to enforce stress constraints at the local integration point level which provides, for instance, the basis for a straightforward integration of 3D gradient-extended material models into beam or shell elements or for their usage in 2D plane stress computations. A structural example problem illustrates the merits of the model and its ability to deliver mesh-independent results in coupled damage-plasticity finite element simulations.

References

  1. 1.
    Aravas, N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Meth. Eng. 24(7), 1395–1416 (1987)CrossRefMATHGoogle Scholar
  2. 2.
    Auricchio, F., Bonetti, E., Scalet, G., Ubertini, F.: Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. Int. J. Plast. 59, 30–54 (2014)CrossRefGoogle Scholar
  3. 3.
    Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. ZAMM J. Appl. Math. Mech. 89(10), 792–809 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Bažant, Z.P., Belytschko, T., Chang, T.-P.: Continuum theory for strain-softening. J. Eng. Mech. 110(12), 1666–1692 (1984)CrossRefGoogle Scholar
  5. 5.
    Bayerschen, E., Stricker, M., Wulfinghoff, S., Weygand, D., Böhlke, T.: Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc. R. Soc. A 471(2184) (2015)Google Scholar
  6. 6.
    Brepols, T., Wulfinghoff, S., Reese, S.: Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int. J. Plast. 97, 64–106 (2017)Google Scholar
  7. 7.
    Cervera, M., Chiumenti, M.: Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput. Meth. Appl. Mech. Eng. 196(1–3), 304–320 (2006)CrossRefMATHGoogle Scholar
  8. 8.
    Chaboche, J.-L.: Thermodynamics of local state: overall aspects and micromechanics based constitutive relations. Tech. Mech. 23(2–4), 113–119 (2003)Google Scholar
  9. 9.
    Chow, C.L., Wang, J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech 27(5), 547–558 (1987)CrossRefGoogle Scholar
  10. 10.
    de Borst, R.: The zero-normal-stress condition in plane-stress and shell elastoplasticity. Commun. Appl. Numer. Meth. 7(1), 29–33 (1991)CrossRefMATHGoogle Scholar
  11. 11.
    de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)CrossRefGoogle Scholar
  12. 12.
    Dimitrijevic, B.J., Hackl, K.: A method for gradient enhancement of continuum damage models. Tech. Mech. 28(1), 43–52 (2008)Google Scholar
  13. 13.
    Dimitrijevic, B.J., Hackl, K.: A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Method. Biomed. Eng. 27(8), 1199–1210 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dodds, R.H.: Numerical techniques for plasticity computations in finite element analysis. Comput. Struct. 26(5), 767–779 (1987)CrossRefMATHGoogle Scholar
  15. 15.
    Duda, F.P., Ciarbonetti, A., Sánchez, P.J., Huespe, A.E.: A phase-field/gradient damage model for brittle fracture in elastic-plastic solids. Int. J. Plast. 65, 269–296 (2015)CrossRefGoogle Scholar
  16. 16.
    Dvorkin, E.N., Pantuso, D., Repetto, E.A.: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Meth. Appl. Mech. Eng. 125(1), 17–40 (1995)CrossRefGoogle Scholar
  17. 17.
    Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)CrossRefGoogle Scholar
  18. 18.
    Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472(2188), 20150755 (27 pages) (2016)Google Scholar
  19. 19.
    Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50(4b), 1010–1020 (1983)CrossRefMATHGoogle Scholar
  20. 20.
    Grassl, P., Jirásek, M.: On mesh bias of local damage models for concrete. In: Proceedings of FraMCoS-5, pp. 252–262. Vail, USA (2004)Google Scholar
  21. 21.
    Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.W.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solid. 61(5), 1241–1264 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hütter, G., Linse, T., Mühlich, U., Kuna, M.: Simulation of ductile crack initiation and propagation by means of a non-local gurson-model. Int. J. Solid. Struct. 50(5), 662–671 (2013)CrossRefGoogle Scholar
  23. 23.
    Hütter, G., Roth, T.L.S., Mühlich, U., Kuna, M.: A modeling approach for the complete ductile-brittle transition region: cohesive zone in combination with a non-local gurson-model. Int. J. Fract. 185(1), 129–153 (2014)CrossRefGoogle Scholar
  24. 24.
    Jetteur, P.: Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng. Comput. 3(3), 251–253 (1986)CrossRefGoogle Scholar
  25. 25.
    Jirásek, M., Grassl, P.: Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng. Fract. Mech 75(8), 1921–1943 (2008)CrossRefGoogle Scholar
  26. 26.
    Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solid. Struct. 25(7), 803–833 (1989)CrossRefMATHGoogle Scholar
  27. 27.
    Junker, P., Schwarz, S., Makowsk, J., Hackl, K.: A relaxation-based approach to damage modeling. Continuum Mech. Therm. 29(1), 291–310 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kachanov, L.M.: ‘Time of the rupture process under creep conditions’, Izvestiya Akademii Nauk SSSR. Otdelenie Tekhnicheskikh Nauk 8, 26–31 (1958)Google Scholar
  29. 29.
    Kachanov, M.: Elastic solids with many cracks and related problems. In: Hutchinson, J. W., Wu, T. Y. (eds.) Advances in Applied Mechanics, vol. 30, pp. 259–445. Elsevier (1993)Google Scholar
  30. 30.
    Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (8 pages) (2012)Google Scholar
  31. 31.
    Kiefer, B., Waffenschmidt, T., Sprave, L., Menzel, A.: A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts. Int. J. Damage Mech. 1–43 (2017)Google Scholar
  32. 32.
    Kirchner, E., Reese, S., Wriggers, P.: A finite element method for plane stress problems with large elastic and plastic deformations. Commun. Numer. Meth. Eng. 13(12), 963–976 (1997)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Klinkel, S., Govindjee, S.: Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(8), 902–921 (2002)CrossRefMATHGoogle Scholar
  34. 34.
    Lemaitre, J.: Evaluation of dissipation and damage in metals submitted to dynamic loading. In: Proceedings International Conference Mechanical Behavior of Materials, vol. 1. Kyoto, Japan (1971)Google Scholar
  35. 35.
    Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials, 1st edn. Cambridge University Press (1990)Google Scholar
  36. 36.
    Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000)CrossRefMATHGoogle Scholar
  37. 37.
    Miehe, C.: Variational gradient plasticity at finite strains. Part I: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Meth. Appl. Mech. Eng. 268, 677–703 (2014)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRefGoogle Scholar
  39. 39.
    Miehe, C., Welschinger, F., Aldakheel, F.: Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput. Meth. Appl. Mech. Eng. 268, 704–734 (2014)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Mozaffari, N., Voyiadjis, G.Z.: Coupled gradient damage—viscoplasticty model for ductile materials: phase field approach. Int. J. Plast. 83, 55–73 (2016)CrossRefGoogle Scholar
  41. 41.
    Naderi, M., Jung, J., Yang, Q.D.: A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. 197(2), 147–168 (2016)CrossRefGoogle Scholar
  42. 42.
    Pietryga, M.P., Vladimirov, I.N., Reese, S.: A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation. Mech. Mater. 44, 163–173 (2012)CrossRefGoogle Scholar
  43. 43.
    Rabotnov, Y. N.: Paper 68: on the equation of state of creep. Proc. Inst. Mech. Eng. (Conf. Proc.) 178(1), 117–122 (1963)Google Scholar
  44. 44.
    Reese, S.: On the equivalent of mixed element formulations and the concept of reduced integration in large deformation problems. Int. J. Nonlinear Sci. Numer. Simul. 3(1), 1–34 (2002)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Meth. Eng. 57(8), 1095–1127 (2003)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Reese, S.: On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Comput. Meth. Appl. Mech. Eng. 194(45), 4685–4715 (2005)CrossRefMATHGoogle Scholar
  47. 47.
    Saanouni, K., Forster, C., Ben Hatira, F.: On the anelastic flow with damage. Int. J. Damage Mech. 3(2), 140–169 (1994)CrossRefMATHGoogle Scholar
  48. 48.
    Saanouni, K., Hamed, M.: Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int. J. Solid. Struct. 50(14–15), 2289–2309 (2013)CrossRefGoogle Scholar
  49. 49.
    Seabra, M.R.R., Šuštarič, P., Cesar de Sa, J.M.A., Rodič, T.: Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 52(1), 161–179 (2013)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Numer. Meth. Eng. 26(10), 2161–2185 (1988)CrossRefMATHGoogle Scholar
  51. 51.
    Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Meth. Eng. 22(3), 649–670 (1986)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Encyclopedia of Physics, vol. III/3. Springer, Berlin, Heidelberg (1965)Google Scholar
  53. 53.
    Vladimirov, I.N., Pietryga, M.P., Kiliclar, Y., Tini, V., Reese, S.: Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage. Int. J. Damage Mech. 23(8), 1096–1132 (2014)CrossRefGoogle Scholar
  54. 54.
    Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int. J. Numer. Meth. Eng. 75(1), 1–28 (2008)CrossRefMATHGoogle Scholar
  55. 55.
    Vladimirov, I.N., Pietryga, M.P., Reese, S.: Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening. J. Mater. Process. Tech. 209(8), 4062–4075 (2009)CrossRefGoogle Scholar
  56. 56.
    Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26(5), 659–687 (2010)CrossRefMATHGoogle Scholar
  57. 57.
    Waffenschmidt, T., Polindara, C., Menzel, A., Blanco, S.: A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput. Meth. Appl. Mech. Eng. 268, 801–842 (2014)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Wulfinghoff, S., Bayerschen, E., Böhlke, T.: A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)CrossRefGoogle Scholar
  59. 59.
    Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A 468(2145), 2682–2703 (2012)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Ziemann, M., Chen, Y., Kraft, O., Bayerschen, E., Wulfinghoff, S., Kirchlechner, C., Tamura, N., Böhlke, T., Walter, M., Gruber, P.A.: Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater. 97, 216–222 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tim Brepols
    • 1
  • Stephan Wulfinghoff
    • 1
  • Stefanie Reese
    • 1
  1. 1.Institute of Applied MechanicsRWTH Aachen UniversityAachenGermany

Personalised recommendations