Skip to main content

Blood Supply Chain Management and Future Research Opportunities

  • Chapter
  • First Online:
Book cover Operations Research Applications in Health Care Management

Abstract

In this chapter, we discuss the challenges and research opportunities in the blood collection operations and explore the benefits of recent advances in the blood donation process. According to the regulations, donated blood has to be processed in a processing facility within 6 h of donation. This forces blood donation organizations to schedule continuous pickups from donation sites. The underlying mathematical problem is a variant of well-known Vehicle Routing Problem (VRP). The main differences are the perishability of the product to be collected, and the continuity of donations. We discuss the implications of such differences on collection routes from donation centers. Recent advances such as multicomponent apheresis (MCA) allow the donation of more than one component and/or more than one transfusable unit of each blood product. MCA provides several opportunities including (1) increasing the donor utilization, (2) tailoring the donations based on demand, and (3) reducing the infection risks in the transfusion. We also discuss MCA, its potential benefits and how to best use MCA in order to improve blood products availability and manage donation/disposal costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott RD, Friedman BA, Williams GW (1978) Recycling older blood by integration into the inventory of a single large hospital blood bank: a computer simulation approach. Transfusion 18 (6): 709–715

    Article  Google Scholar 

  • Albright SC (1976) Optimal stock depletion policies with stochastic lives. Manag Sci 22 (8): 852–857

    Article  Google Scholar 

  • Alshamrani A, Mathur K, Ballou RH (2007) Reverse logistics: simultaneous design of delivery routes and returns strategies. Comput Oper Res 34 (2): 595–619

    Article  Google Scholar 

  • American Association of Blood Banks (2007) National blood collection and utilization survey

    Google Scholar 

  • American Association of Blood Banks (2011) National blood collection and utilization survey

    Google Scholar 

  • American Association of Blood Banks (2015) http://www.aabb.org

  • American Red Cross (2011) http://www.redcrossblood.org

  • American Red Cross Biomedical Services (2015) A leader in providing lifesaving blood and blood products to the nation. http://www.redcrossblood.org

  • American Red Cross Blood Services (2015) http://volunteer.united-e-way.org/uwbec/org/567730.html

  • AuBuchon JP, Dumont LJ, Herschel L, Roger J, Beddard RL, Taylor HL, Whitley PH, Sawyer SL, Graminske S, Martinson K, Dora R, Heldke S, Adamson J, Rose LE (2007) Automated collection of double red blood cell units with a variable-volume separation chamber. Transfusion 48 (1): 147–152

    Google Scholar 

  • Baldacci R, Christofides N, Mingozzi A (2008) An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Math Program 115 (2): 351–385

    Article  Google Scholar 

  • Belien J, Force, H (2012) Supply chain management of blood products: a literature review. Eur J Oper Res 217 (1): 1–16

    Article  Google Scholar 

  • Blanco L (2002) Tailored collection of multicomponent by apheresis. Transfus Apher Sci 27 (2): 123–127

    Article  Google Scholar 

  • Blood Bank of Alaska (2016) http://www.bloodbankofalaska.org

  • Bonomo P, Garozzo G, Bennardello F (2004) The selection of donors in multicomponent collection management. Transfus Apher Sci 30 (1): 55–59

    Article  Google Scholar 

  • Bosnes V, Aldrin M, Heier HE (2005) Predicting blood donor arrival. Transfusion 45 (2): 162–170

    Article  Google Scholar 

  • Brennan JE, Golden BL, Rappoport HK (1992) Go with the flow: improving Red Cross bloodmobiles using simulation analysis. Interfaces 22 (5): 1–13

    Article  Google Scholar 

  • Brodheim E, Hirsch R (1979) Effect of adenine on blood usage strategies, shortages and outdating. Transfusion 19 (2): 105–106

    Article  Google Scholar 

  • Brodheim E, Prastacos GP (1979a) The Long Island blood distribution system as a prototype for regional blood management. Interfaces 9 (5): 3–20

    Article  Google Scholar 

  • Brodheim E, Prastacos GP (1979b) A regional blood management system with prescheduled deliveries. Transfusion 19 (4): 455–462

    Article  Google Scholar 

  • Brodheim E, Derman C, Prastacos G (1975) On the evaluation of a class of inventory policies for perishable products such as blood. Manag Sci 21 (11): 1320–1325

    Article  Google Scholar 

  • Brodheim E, Hirsch F, Prastacos G (1976) Setting inventory levels for hospital blood banks. Transfusion 16 (1): 63–70

    Article  Google Scholar 

  • Carden R, DelliFraine JL (2005) An examination of blood center structure and hospital customer satisfaction. Health Mark Q 22 (3): 21–42

    Article  Google Scholar 

  • Cerveny RP (1980) An application of warehouse location techniques to bloodmobile operations. Interfaces 10 (6): 88–96

    Article  Google Scholar 

  • Chazan D, Gal S (1977) A Markovian model for a perishable product inventory. Manag Sci 23 (5): 512–521

    Article  Google Scholar 

  • Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12 (4): 568–581

    Article  Google Scholar 

  • Cohen MA, Pierskalla WP (1975) Management policies for a regional blood bank. Transfusion 15 (1): 58–67

    Article  Google Scholar 

  • Cohen MA, Pierskalla WP (1979) Target inventory levels for a hospital blood bank or a decentralized regional blood banking system. Transfusion 19 (4): 444–454

    Article  Google Scholar 

  • Cohen MA, Pierskalla WP, Sassetti RJ, Consolo J (1979) An overview of a hierarchy of planning models for regional blood bank management. Transfusion 19 (5): 526–534

    Article  Google Scholar 

  • Cohen MA, Pierskalla WP, Sassetti RJ (1981) Regionalization of blood banking services. Technical report, University of Pennsylvania

    Google Scholar 

  • Cohen MA, Pierskalla WP, Sassetti RJ (1983) The impact of adenine and inventory utilization decisions on blood inventory management. Transfusion 23 (1): 54–58

    Article  Google Scholar 

  • Connelly LB, Pink A (2002) An economic evaluation of plasma production via erythroplasmapheresis and whole blood collection. Transfus Apher Sci 27 (2): 101–111

    Article  Google Scholar 

  • Cordeau JF, Gendreau M, Laporte G, Potvin JY, Semet F (2002) A guide to vehicle routing heuristics. J Oper Res Soc 53 (5): 512–522

    Article  Google Scholar 

  • Cumming PD, Kendall KE, Pegels CC, Seagle JP, Shubsda JF (1976) A collections planning model for regional blood suppliers: description and validation. Manag Sci 22 (9): 962–971

    Article  Google Scholar 

  • Cumming PD, Kendall KE, Pegels CC, Seagle JP (1977) Cost effectiveness and use of frozen blood to alleviate blood shortages. Transfusion 17 (6): 602–606

    Article  Google Scholar 

  • Currie CJ, Patel TC, McEwan P, Dixon S (2004) Evaluation of the future supply and demand for blood products in the United Kingdom National Health Service. Transfus Med 14 (1): 19–24

    Article  Google Scholar 

  • Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6 (1): 80–91

    Article  Google Scholar 

  • Dantzig G, Fulkerson D, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Oper Res 2: 393–410

    Google Scholar 

  • Davey RJ (2004) Recruiting blood donors: challenges and opportunities. Transfusion 44 (4): 597–600

    Article  Google Scholar 

  • Denesiuk L, Richardson T, Nahirniak S, Clarke G (2006) Implementation of a redistribution system for near-outdate red blood cell units. Arch Pathol Lab Med 130 (8): 1178–1183

    Google Scholar 

  • Doerner KF, Gronalt M, Hartl RF, Kiechle G, Reimann M (2008) Exact and heuristic algorithms for the vehicle routing problem with multiple interdependent time windows. Comput Oper Res 35 (9): 3034–3048

    Article  Google Scholar 

  • Dumas MB, Rabinowitz M (1977) Policies for reducing blood wastage in hospital blood banks. Manag Sci 23 (10): 1124–1132

    Article  Google Scholar 

  • Elston RC, Pickrel JC (1963) A statistical approach to ordering and usage policies for a hospital blood bank. Transfusion 3 (1): 41–47

    Article  Google Scholar 

  • Elston RC, Pickrel JC (1965) Guides to inventory levels for a hospital blood bank determined by electronic computer simulation. Transfusion 5 (5): 465–470

    Article  Google Scholar 

  • Erickson ML, Champion MH, Klein R, Ross RL, Neal ZM, Snyder EL (2008) Management of blood shortages in a tertiary care academic medical center: the Yale-New Haven hospital frozen blood reserve. Transfusion 48 (10): 2252–2263

    Article  Google Scholar 

  • Federgruen A, Prastacos G, Zipkin PH (1986) An allocation and distribution model for perishable products. Oper Res 34 (1): 75–82

    Article  Google Scholar 

  • Flegel WA, Besenfelder W, Wagner FF (2000) Predicting a donor’s likelihood of donating within a preselected time interval. Transfus Med 10 (3): 181–192

    Article  Google Scholar 

  • Fontaine MJ, Chung YT, Rogers WM, Sussmann HD, Quach P, Galel SA, Goodnough LT, Erhun F (2009) Improving platelet supply chains through collaborations between blood centers and transfusion services. Transfusion 49 (10): 2040–2047

    Article  Google Scholar 

  • France CR, France JL, Roussos M, Ditto B (2004) Mild reactions to blood donation predict a decreased likelihood of donor return. Transfus Apher Sci 30 (1): 17–22

    Article  Google Scholar 

  • Frankfurter GM, Kendall KE, Pegels CC (1974) Management control of blood through a short-term supply-demand forecast system. Manag Sci 21 (4): 444–452

    Article  Google Scholar 

  • Friedman BA, Abbott RD, Williams GW (1982) A blood ordering strategy for hospital blood banks derived from a computer simulation. Am J Clin Pathol 78 (2): 154–160

    Article  Google Scholar 

  • Fries BE (1975) Optimal ordering policy for a perishable commodity with fixed lifetime. Oper Res, 23 (1): 46–61

    Article  Google Scholar 

  • Fukasawa R, Longo H, Lysgaard J, de Aragao MP, Reis M, Uchoa E, Werneck FR (2006) Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math Program 106 (3): 491–451

    Article  Google Scholar 

  • Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manag Sci 40 (10): 1276–1290

    Article  Google Scholar 

  • Ghandforoush P, Sen TK (2010) A DSS to manage platelet production supply chain for regional blood centers. Decis Support Syst 50 (1): 32–42

    Article  Google Scholar 

  • Gilcher RO, McCombs S (2005) Seasonal blood shortages can be eliminated. Curr Opin Hematol 12 (6): 503–508

    Article  Google Scholar 

  • Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle dispatch problem. Oper Res 22 (2): 340–349

    Article  Google Scholar 

  • Glynn SA, Smith JW, Schreiber GB, Kleinman SH, Nass, CC, Bethel J, Biswas B, Thomson RA, Williams AE (2001) Repeat whole blood and plateletpheresis donors: unreported deferrable risks, reactive screening tests, and response to incentive programs. Transfusion 41 (6): 736–743

    Article  Google Scholar 

  • Goh C-H, Greenberg BS, Matsuo H (1993) Two-stage perishable inventory models. Manag Sci 39 (5): 633–649

    Article  Google Scholar 

  • Golden BL, Raghavan S, Wasil EA (2008) The vehicle routing problem: latest advances and new challenges. Operations research computer science interfaces series, vol 43. Springer, New York

    Book  Google Scholar 

  • Goyal SK, Giri BC (2001) Recent trends in modeling of deteriorating inventory. Eur J Oper Res 134 (1): 1–16

    Article  Google Scholar 

  • Graf S, Katz A, Morse E (1972) Blood inventory distribution by type in a total supply system. Transfusion 12 (3): 185–189

    Article  Google Scholar 

  • Gregor PJ, Forthofer RN, Kapadia AS (1982) An evaluation of inventory and transportation policies of a regional blood distribution system. Eur J Oper Res 10 (1): 106–113

    Article  Google Scholar 

  • Gulf Coast Regional Blood Center (2016) http://www.giveblood.org

  • Haemonetics Corporation (2008) Transforming blood management. 2008 Annual Report

    Google Scholar 

  • Haijema R, Van Der Wal J, Van Dijk NM (2007) Blood platelet production: optimization by dynamic programming and simulation. Comput Oper Res 34 (3): 760–779

    Article  Google Scholar 

  • Haijema R, Van Dijk N, Van Der Wal J, Sibinga, CS (2009) Blood platelet production with breaks: optimization by SDP and simulation. Int J Prod Econ 121 (2): 464–473

    Article  Google Scholar 

  • Halperin D, Baetens J, Newman B (1998) The effect of short-term, temporary deferral on future blood donation. Transfusion 38 (2): 181–183

    Article  Google Scholar 

  • Hemmelmayr V, Doerner KF, Hartl RF, Savelsbergh MWP (2009) Delivery strategies for blood products supplies. OR Spectr 31 (4): 707–725

    Article  Google Scholar 

  • Hemmelmayr V, Doerner KF, Hartl RF, Savelsbergh MWP (2010) Vendor managed inventory for environments with stochastic product usage. Eur J Oper Res 202 (3): 686–695

    Article  Google Scholar 

  • Hess JR (2004) Red cell freezing and its impact on the supply chain. Transfus Med 14 (1): 1–8

    Article  Google Scholar 

  • Hesse SM, Coullard CR, Daskin MS, Hurter AP (1997) A case study in platelet inventory management. In: Proceedings of the Sixth Annual Industrial Engineering Research Conference, pp 801–806

    Google Scholar 

  • Hurlburt EL, Jones AR (1964) Blood bank inventory control. Transfusion 4 (2): 126–133

    Article  Google Scholar 

  • Jacobs DA, Sylan MN, Clemson BA (1996) An analysis of alternative locations and service areas of American Red Cross blood facilities. Interfaces 26 (3): 40–50

    Article  Google Scholar 

  • Jagannathan R, Sen T (1991) Storing crossmatched blood: a perishable inventory model with prior allocation. Manag Sci 37 (3): 251–266

    Article  Google Scholar 

  • James RC, Matthews DE (1996) Analysis of blood donor return behaviour using survival regression methods. Transfus Med 6 (1): 21–30

    Article  Google Scholar 

  • Jennings JB (1968) An analysis of hospital blood bank whole blood inventory control policies. Transfusion 8 (6): 335–342

    Article  Google Scholar 

  • Jennings JB (1973) Blood bank inventory control. Manag Sci 19 (6): 637–645

    Article  Google Scholar 

  • Kahn RA, McDonough B, Rowe A, Ellis FR, Pino B (1978) The impact of converting to an all frozen blood system in a large regional blood center. Transfusion 18 (3): 304–311

    Article  Google Scholar 

  • Kamp C, Heiden M, Henseler O, Seitz R (2010) Management of blood supplies during an influenza pandemic. Transfusion 50 (1): 231–239

    Article  Google Scholar 

  • Karaesmen IZ, Scheller-Wolf A, Deniz B (2011) Managing perishable and aging inventories: review and future research directions. In: Planning production and inventories in the extended enterprise. International series in operations research and management science. Kluwer Academic, Dordrecht, pp 393–436

    Chapter  Google Scholar 

  • Kaspi H, Perry D (1983) Inventory systems of perishable commodities. Adv Appl Probab 15 (3): 674–685

    Article  Google Scholar 

  • Katsaliaki K (2008) Cost-effective practices in the blood service sector. Health Policy 86 (2): 276–287

    Article  Google Scholar 

  • Katz AJ, Carter CW, Saxton P, Blutt J, Kakaya RM (1983) Simulation analysis of platelets production and inventory management. Vox Sang 44 (1): 31–36

    Article  Google Scholar 

  • Keller NC, Bainbridge MA (1998) Model for improved donor utilization by multiple product collection. Transfusion 38: S26

    Google Scholar 

  • Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin

    Book  Google Scholar 

  • Kendall KE (1980) Multiple objective planning for regional blood centers. Long Range Plan 13 (4): 98–104

    Article  Google Scholar 

  • Kendall KE, Lee SM (1980) Formulating blood rotation policies with multiple objectives. Manag Sci 26 (11): 1145–1157

    Article  Google Scholar 

  • Kopach R, Balcioglu B, Carter M (2008) Tutorial on constructing a red blood cell inventory management system with two demand rates. Eur J Oper Res 185 (3): 1051–1059

    Article  Google Scholar 

  • Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43 (4): 408–416

    Article  Google Scholar 

  • Laporte G, Semet F (2002) Classical heuristics for the capacitated VRP. In The vehicle routing problem. SIAM monographs on discrete mathematics and applications, Society for Industrial and Applied Mathematics, Philadelphia, pp 109–128

    Google Scholar 

  • Ledman RE, Groh N (1984) Platelet production planning to ensure availability while minimizing outdating. Transfusion 24 (6): 532–533

    Article  Google Scholar 

  • LifeSource (2015) http://www.lifesource.org

  • Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math Program 100 (2): 423–445

    Article  Google Scholar 

  • Madden E, Murphy EL, Custer B (2007) Modeling red cell procurement with both double-red-cell and whole-blood collection and the impact of European travel deferral on units available for transfusion. Transfusion 47 (11): 2025–2037

    Article  Google Scholar 

  • Matthes GA (2002) Options and cost effectiveness of multicomponent blood collection. Transfus Sci 27 (2): 115–121

    Google Scholar 

  • Mendez A, Wagli F, Schmid I, Frey BM (2007) Frequent platelet apheresis donations in volunteer donors with hemoglobin  <  125g/l are safe and efficient. Transfus Apher Sci 36 (1): 47–53

    Article  Google Scholar 

  • Michaels JD, Brennan JE, Golden BL, Fu MC (1993) A simulation study of donor scheduling system for the American Red Cross. Comput Oper Res 20 (2): 199–213

    Article  Google Scholar 

  • Moog R (2009) Feasibility and safety of triple dose platelet collection by apheresis. J Clin Apher 24 (6): 238–240

    Article  Google Scholar 

  • Nahmias S (1975) Optimal ordering policies for perishable inventory-II. Oper Res 23 (4): 735–749

    Article  Google Scholar 

  • Nahmias S (1976) Myopic approximations for the perishable inventory problem. Manag Sci 22 (9): 1002–1008

    Article  Google Scholar 

  • Nahmias S (1982) Perishable inventory theory: a review. Oper Res 30 (4): 680–708

    Article  Google Scholar 

  • Nahmias S, Pierskalla WP (1973) Optimal ordering policies for product that perishes in two periods subject to stochastic demand. Nav Res Logist 20 (2): 207–229

    Article  Google Scholar 

  • Or I, Pierskalla WP (1979) A transportation location-allocation model for regional blood banking. AIIE Trans 11 (2): 86–95

    Article  Google Scholar 

  • Osman IH (1993) Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann Oper Res 41 (4): 421–451

    Article  Google Scholar 

  • Ownby HE, Kong F, Watanabe K, Tu Y, Nass CC (1999) Analysis of donor return behavior. Transfusion 39 (10): 1128–1135

    Article  Google Scholar 

  • Pegels CC, Jelmert AE (1970) An evaluation of blood-inventory policies: a Markov chain application. Oper Res 18 (6): 1087–1098

    Article  Google Scholar 

  • Pegels CC, Jelmert AE (1971) A study of two blood bank crossmatch policies. AIIE Trans 3 (1): 69–75

    Article  Google Scholar 

  • Pegels CC, Seagle JP, Cumming PD, Kendall KE (1975) A computer-based interactive planning system for scheduling blood collections. Transfusion 15 (4): 381–386

    Article  Google Scholar 

  • Pegels CC, Seagle JP, Cumming PC, Kendall KE, Shubsda JF (1977) An analysis of selected blood service policy changes. Med Care 15 (2): 147–157

    Article  Google Scholar 

  • Pereira A (2004) Performance of time-series methods in forecasting the demand for red blood cell transfusion. Transfusion 44 (5): 739–746

    Article  Google Scholar 

  • Pereira A (2005) Blood inventory management in the type and screen era. Vox Sang 89 (4): 245–250

    Article  Google Scholar 

  • Perry D, Posner MJM (1990) Control of input and demand rates in inventory systems of perishable commodities. Nav Res Logist 37 (1): 85–97

    Article  Google Scholar 

  • Pierskalla WP (2004) Supply chain management of blood banks. In: Operations research and health care: a handbook of methods and applications. Kluwer Academic, New York, pp 103–145

    Google Scholar 

  • Pierskalla WP, Roach CD (1972) Optimal issuing policies for perishable inventory. Manag Sci 18 (11): 603–614

    Article  Google Scholar 

  • Piliavin JA (1987) Temporary deferral and donor return. Transfusion 27 (2): 199–200

    Article  Google Scholar 

  • Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34 (8): 2403–2435

    Article  Google Scholar 

  • Pitocco C, Sexton TR (2005) Alleviating blood shortages in a resource-constrained environment. Transfusion 45 (7): 1118–1126

    Article  Google Scholar 

  • Popovsky MA (2005) Multicomponent apheresis blood collection in the United States: current status and future directions. Transfus Apher Sci 32 (3): 299–304

    Article  Google Scholar 

  • Prastacos GP (1978) Optimal myopic allocation of a product with fixed lifetime. J Oper Res Soc 29 (9): 905–913

    Article  Google Scholar 

  • Prastacos GP (1981) Allocation of a perishable product inventory. Oper Res 29 (1): 95–107

    Article  Google Scholar 

  • Prastacos GP (1984) Blood inventory management: an overview of theory and practice. Manag Sci 30 (7): 777–780

    Article  Google Scholar 

  • Prastacos GP, Brodheim E (1979) Computer-based regional blood distribution. Comput Oper Res 6 (2): 69–77

    Article  Google Scholar 

  • Prastacos GP, Brodheim E (1980) PBDS: a decision support system for regional blood management. Manag Sci 26 (5): 451–463

    Article  Google Scholar 

  • Price WL, Turcotte M (1986) Locating a blood bank. Interfaces 16 (5): 17–26

    Article  Google Scholar 

  • Rabinowitz M (1973) Blood bank inventory policies: a computer simulation. Health Serv Res 8 (4): 271–282

    Google Scholar 

  • Ralphs T, Kopman L, Pulleyblank W, Trotter L (2003) On the capacitated vehicle routing problem. Math Program 94 (2–3): 343–359

    Article  Google Scholar 

  • Renaud J, Boctor FF, Laporte G (1996) An improved petal heuristic for the vehicle routing problem. J Oper Res Soc 47 (2): 329–336

    Article  Google Scholar 

  • Ridley J (2009) Improving the management of the blood supply through the use of Haemonetics’ MCS-8150 automated double red cell collection devices. Transfus Apher Sci 41 (1): 39–43

    Article  Google Scholar 

  • Rytila JS, Spens KM (2006) Using simulation to increase efficiency in blood supply chains. Manag Res News 29 (12): 801–819

    Article  Google Scholar 

  • Sahin G, Sural H, Meral S (2007) Locational analysis for regionalization of Turkish Red Crescent blood services. Comput Oper Res 34 (3): 692–704

    Article  Google Scholar 

  • Sanchez AM, Ameti DI, Schreiber GB, Thomson RA, Lo A, Bethel J, Williams AE (2001) The potential impact of incentives on future blood donation behavior. Transfusion 41 (2): 172–178

    Article  Google Scholar 

  • Sapountzis C (1984) Allocating blood to hospitals from a central blood bank. Eur J Oper Res 16 (2): 157–162

    Article  Google Scholar 

  • Sapountzis C (1989) Allocating blood to hospitals. J Oper Res Soc 40 (5): 443–449

    Article  Google Scholar 

  • Schreiber GB, Sharma UK, Wright DJ, Glynn SA, Ownby HE, Tu Y, Garratty G, Piliavin J, Zuck T, Gilcher R (2005) First year donation patterns predict long-term commitment for first-time donors. Vox Sang 88 (2): 114–121

    Article  Google Scholar 

  • Schreiber GB, Schlumpf KS, Glynn SA, Wright DJ, Tu Y, King MR, Higgins MJ, Kessler D, Gilcher R, Nass CC, Guiltinan AM (2006) Convenience, the bane of our existence, and other barriers to donating. Transfusion 46 (4): 545–553

    Article  Google Scholar 

  • Sirelson V, Brodheim E (1991) A computer planning model for blood platelet production and distribution. Comput Methods Programs Biomed 35 (4): 279–291

    Article  Google Scholar 

  • Smith JW, Gilcher RO (2006) The future of automated red blood cell collection. Transfus Apher Sci 24 (2): 219–226

    Article  Google Scholar 

  • South Texas Blood & Tissue Center (2014) http://www.southtexasblood.org

  • Stanford Blood Center (2015) http://bloodcenter.stanford.edu

  • Toth P, Vigo D (2002a) Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discret Appl Math 123 (1–3): 487–512

    Article  Google Scholar 

  • Toth P, Vigo D (eds) (2002b) The vehicle routing problem. SIAM monographs on discrete mathematics and applications. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Valbonesi M, Bruni R, Bo A, De Luigi MC, Stura P, Carlier P, Sanfilippo B (2001) Double plateletpheresis (DPA) and tailored RBC collection with the Excel-Pro: preliminary results. Transfus Apher Sci 24 (1): 71–73

    Article  Google Scholar 

  • Valbonesi M, Giannini G, Morelli F, Frisoni R, Capra C (2005) Multicomponent collection as of 2005. Transfus Apher Sci 32 (3): 287–297

    Article  Google Scholar 

  • Van Dijk N, Haijema R, Van Der Wal J, Sibinga CS (2009) Blood platelet production: a novel approach for practical optimization. Transfusion 49 (3): 411–420

    Article  Google Scholar 

  • Vaquero MAP (2006) Multicomponent collection: the basque experience. Transfus Apher Sci 34 (1): 84–86

    Article  Google Scholar 

  • Vrat P, Khan AB (1976) Simulation of a blood-inventory-bank system in a hospital. Socio Econ Plan Sci 10 (1): 7–15

    Article  Google Scholar 

  • Waxman DA (2002) Volunteer donor apheresis. Ther Apher 6 (1): 77–81

    Article  Google Scholar 

  • Westphal RG (1997) Donors and the United States blood supply. Transfusion 37 (2): 237–241

    Article  Google Scholar 

  • Williams AE, Thomson RA, Schreiber GB, Watanabe K, Bethel J, Lo A, Kleinman SH, Hollingsworth CG, Nemo GJ (1997) Estimates of infectious disease risk factors in US blood donors. Retrovirus epidemiology donor study. J Am Med Assoc 277 (12): 967–972

    Article  Google Scholar 

  • World Health Organization (2016) http://www.who.int

  • Wu Y, Glynn SA, Schreiber GB, Wright DJ, Lo A, Murphy EL, Kleinman SH, Garratty G (2001) First-time blood donors: demographic trends. Transfusion 41 (5): 360–364

    Article  Google Scholar 

  • Yahnke DP, Rimm AA, Mundt CJ, Aster R, Hurst TM (1972) Analysis and optimization of a regional blood bank distribution process. Transfusion 12 (2): 111–118

    Article  Google Scholar 

  • Yen H (1975) Inventory management for a perishable product multi-echelon system. PhD thesis, Northwestern University

    Google Scholar 

  • Yi J, Scheller-Wolf A (2003) Vehicle routing with time windows and time-dependent rewards: a problem from the American Red Cross. Technical report, Carnegie Mellon University

    Google Scholar 

  • Yu PL, Chung KH, Lin CK, Chan JS, Lee CK (2007) Predicting potential drop-out and future commitment for first-time donors based on first 1.5-year donation patterns: the case in Hong Kong Chinese donors. Vox Sang 93 (1): 57–63

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by TUBITAK grant 112M945.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ekici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekici, A., Özener, O.Ö., Çoban, E. (2018). Blood Supply Chain Management and Future Research Opportunities. In: Kahraman, C., Topcu, Y. (eds) Operations Research Applications in Health Care Management. International Series in Operations Research & Management Science, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-319-65455-3_10

Download citation

Publish with us

Policies and ethics