Skip to main content

Spin Hall Effect

  • Chapter
  • First Online:
Spin Physics in Semiconductors

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 157))

Abstract

Since electrons have an internal degree of freedom, spin, they are characterized not only by charge density and electric current, but also by spin density and spin current. The spin current is described by a tensor \(q_{ij}\), where the first index indicates the direction of flow, while the second one says which component of the spin is flowing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notion of spin current was introduced in [1]. Since \(s=1/2\), it might be more natural to define the spin current density for this case as (1 / 2)nv. We find it more convenient to omit 1 / 2, because this allows to avoid numerous factors 1 / 2 and 2 in other places. Many different notations for the spin current are used in the literature, for example, such as \(\varvec{J}^\alpha \), where \(\alpha \) is the spin index. Such notations obscure the fundamental fact that the spin current is a second rank tensor. Here we use the original notations of [1].

  2. 2.

    Like any second rank tensor, \(q_{ij}\) can be split in symmetric and antisymmetric parts. It is the antisymmetric part that is responsible for the SHE. The symmetric part manifests itself in the phenomenon of swapping spin currents, see below.

  3. 3.

    The resistance of a metal increases with temperature, while the temperature depends on the balance between the Joule heating and the cooling via thermal conductivity of the surrounding media. Thus, a decrease of the thermal conductivity will result in an increase of the wire temperature, and hence of its resistance.

  4. 4.

    Consider two parallel resistances \(R+\varDelta R\) and \(R-\varDelta R\). The total resistance will be smaller by an amount \(\sim (\varDelta R/R)^2\) compared to the case when both resistances are equal to R.

  5. 5.

    This is reminescent of the Magnus effect: a spinning tennis ball deviates from its straight path in air in a direction depending on the sign of its rotation. From the point of view of symmetry, this effect is described by (8.1).

  6. 6.

    Throughout this chapter, we use the original notations of [1, 2] for the components of the vector of electron flow density \(\varvec{q}\) and the tensor of spin current density \(q_{ij}\). Sums over repeating indices are assumed.

  7. 7.

    There is an additional term describing spin current swapping, see Sect. 8.2.4.

  8. 8.

    The nonzero components are: \(\epsilon _{xyz}=\epsilon _{zxy}= \epsilon _{yzx}= -\epsilon _{yxz}=-\epsilon _{zyx}=-\epsilon _{xzy}=1.\)

  9. 9.

    For 2D electrons, the factor 1/3 should be replaced by 1/2. If the electrons are not degenerate, \(v_F\) should be replaced by the thermal velocity.

  10. 10.

    In the absence of inversion symmetry, spin relaxation is usually related to the spin band splitting. If the splitting at the Fermi level, \(\hbar \varOmega (\varvec{p})\) is such that \(\varOmega (p)\tau _p<<1\), then \(\tau _s>>\tau _p\). In the opposite case, spin relaxation goes through two stages (see Chap. 1, Sect. 1.4.2). The first one has a duration \({\sim } 1/\varOmega (p)\) and the second one is characterized by the time \(\tau _p\). Thus there are also two characteristic spatial scales: \(v_F/\varOmega (p)\) and \(v_F\tau _p=\ell \), and the first one is much smaller than the second one. Obviously, the physics on these scales can not be treated by the diffusion equation.

  11. 11.

    The sign is opposite to that of the correction in the bulk. The reason is that in the spin layers the spin current induced by electric field is compensated by the opposing diffusion spin current due to the polarization gradient. It is this diffusion spin current that causes the surface correction to the electric current.

  12. 12.

    To take account of the magnetic field, an additional term \(\varvec{\varOmega }\times \varvec{P}\) should be added to (8.10).

  13. 13.

    Interestingly, the sources of polarized electrons use optical spin orientation in semiconductors. A GaAs sample pumped by circularly polarized light serves as a photocathode and emits polarized electrons coming from the conduction band, which are then accelerated to high energy. To date, this still is the most important practical application of semiconductor spin physics.

  14. 14.

    For a degenerate electron gas, the Born parameter coincides with the parameter \(r_s\), the ratio of the mean potential energy to the kinetic energy, which defines whether the gas is ideal, or not. At relatively low electron concentration, this parameter may be quite large.

  15. 15.

    These formulas are analogous to the estimate \(\gamma \sim (v/c)^2\) for the scattering of an electron by a proton in vacuum, the velocity of light, c, being replaced by \((E_g/m)^{1/2}\) for the case \(\varDelta>>E_g\) or by \((E_{g}^2/(\varDelta m))^{1/2}\) for \(\varDelta<<E_g\).

  16. 16.

    Note that unlike the full Laplacian of V, \(\varDelta _2 V\) is not related to the charge density by the Poisson equation.

  17. 17.

    This result was derived in 2007 by Maria Lifshits (unpublished).

  18. 18.

    To see this, one should take into account the side jump and the energy conservation during the collision in the presence of electric field.

  19. 19.

    Since the difference between the light and heavy hole masses is large, this splitting is on the order of the Fermi energy \(E_F\). It is assumed that \(\varOmega (p)\tau _p>>1\), which is normally the case.

  20. 20.

    Note the difference between the 3D and 2D cases stemming from the different dimensionality of concentration: \(ek_F/\hbar \) in 3D becomes \(e/\hbar \) in 2D.

  21. 21.

    One-subband or two-subband configurations were realized experimentally using symmetric quantum wells of different widths. A 14 nm wide sample contained only one subband but a 45 nm wide sample contained two (even and odd) subbands. Due to the Coulomb repulsion of the electrons in the wide quantum well, the charge distribution creates a bilayer electron system with a soft barrier inside the well, see Fig. 8.9. Tunneling through this barrier results in a symmetric-antisymmetric splitting and formation of two subbands of opposite parities.

  22. 22.

    Like in the case of the classical Boltzmann equation, this term can be derived by making the usual assumptions of the kinetic theory.

  23. 23.

    This point might be important for the “intrinsic” mechanism of spin currents, which arise because the applied electric field mixes the states in different bands. So does the impurity potential, and great care should be taken to be sure that all corrections on the order of \((\varOmega (p)\tau _p)^{-1}\) have been picked up. The lesson of the “universal spin Hall conductivity” calls for extreme caution in these matters.

References

  1. M.I. Dyakonov, V.I. Perel, Pis’ma Zh. Eksp. Teor. Fiz. 13, 657 (1971); JETP Lett. 13, 467 (1971)

    Google Scholar 

  2. M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459 (1971)

    Article  ADS  Google Scholar 

  3. J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Senftleben, Z. Phys. 31(822), 961 (1930)

    Google Scholar 

  5. C.J. Gorter, Naturwiss 26, 140 (1938)

    Article  ADS  Google Scholar 

  6. L. Gorelik, Pis’ma Zh. Eksp. Teor. Fiz. 33, 403 (1981); Sov. Phys. JETP Lett. 33, 387 (1981)

    Google Scholar 

  7. N.S. Averkiev, M.I. Dyakonov, Pis’ma Zh. Eksp. Teor. Fiz. 35, 196 (1982); Sov. Phys. JETP Lett. 35, 242 (1982)

    Google Scholar 

  8. M.I. Dyakonov, Phys. Rev. Lett. 99, 126601 (2007)

    Article  ADS  Google Scholar 

  9. E.H. Hall, Philos. Mag. 10, 301 (1880); ibid 12, 157 (1881)

    Google Scholar 

  10. J. Smit, Physica. 17, 612 (1951); ibid 21, 877 (1955); 24, 29 (1958)

    Google Scholar 

  11. R. Karplus, J.M. Luttinger, Phys. Rev. 95, 1154 (1954)

    Article  ADS  Google Scholar 

  12. J.N. Chazalviel, I. Solomon, Phys. Rev. Lett. 29, 1676 (1972)

    Article  ADS  Google Scholar 

  13. M.I. Miah, J. Phys. D: Appl. Phys. 40, 1659 (2007)

    Article  ADS  Google Scholar 

  14. N.S. Averkiev, M.I. Dyakonov, Fiz. Tekh. Poluprovodn. 17, 629 (1983); Sov. Phys. Semicond. 17, 393 (1983)

    Google Scholar 

  15. A.A. Bakun, B.P. Zakharchenya, A.A. Rogachev, M.N. Tkachuk, V.G. Fleisher, Pis’ma Zh. Eksp. Teor. Fiz. 40, 464 (1984); Sov. Phys. JETP Lett. 40, 1293 (1984)

    Google Scholar 

  16. M.N. Tkachuk, B.P. Zakharchenya, V.G. Fleisher, Z. Eksp, Teor. Fiz. Pis’ma 44, 47 (1986); Sov. Phys. JETP Lett. 44, 59 (1986)

    Google Scholar 

  17. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  18. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005)

    Google Scholar 

  19. M.I. Dyakonov, V.I. Perel, Fizika Tverdogo Tela 13, 3581 (1971); Sov. Phys. Solid State 13, 3023 (1972)

    Google Scholar 

  20. M.B. Lifshits, M.I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009); see also the Appendix in arXiv:0905.4469

  21. S. Sadjina, Phys. Rev. B 85, 115306 (2012)

    Article  ADS  Google Scholar 

  22. K. Shen, R. Raimondi, G. Vignale, Phys. Rev. B 92, 035301 (2015)

    Google Scholar 

  23. H.B.M. Saidaoui, Phys. Rev. B 92, 024417 (2015)

    Article  ADS  Google Scholar 

  24. H.B.M. Saidaoui, A. Manchon, Phys. Rev. Lett. 117, 036601 (2016)

    Article  ADS  Google Scholar 

  25. C. Espedal, P. Lange, S. Sadjina, A.G. Mal’shukov, A. Brataas, Phys. Rev. B 95, 054509 (2017)

    Article  ADS  Google Scholar 

  26. M.I. Dyakonov, V.A. Khaetskii, Zh. Eksp. Teor. Fiz. 86, 1843 (1984); Sov. Phys. JETP 59, 1072 (1984)

    Google Scholar 

  27. A.V. Khaetskii, Fiz. Tekh. Poluprovodn. 18, 1744 (1984); Sov. Phys. Semicond. 18, 1091 (1984)

    Google Scholar 

  28. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 3rd edn. (Clarendon Press, Oxford, 1965)

    Google Scholar 

  29. M.I. Dyakonov, V.I. Perel, Fiz. Tekh. Poluprov. 10, 350 (1976); Sov. Phys. Semicond. 10, 208 (1976)

    Google Scholar 

  30. A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013)

    Google Scholar 

  31. H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Gepra, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013)

    Article  ADS  Google Scholar 

  32. S. Vélez, V.N. Golovach, A. Bedoya-Pinto, M. Isasa, E. Sagasta, M. Abadia, C. Rogero, L.E. Hueso, F.S. Bergeret, F. Casanova, Phys. Rev. Lett. 116, 016603 (2016)

    Article  ADS  Google Scholar 

  33. J. Kim, P. Sheng, S. Takahashi, S. Mitani, M. Hayashi, Phys. Rev. Lett. 116, 097201 (2016)

    Google Scholar 

  34. A.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, J. Phys. Condens. Matter 28, 103004 (2016)

    Article  ADS  Google Scholar 

  35. H. Wu, X. Zhang, C.H. Wan, B.S. Tao, L. Huang, W.J. Kong, Phys. Rev. B 94, 174407 (2016)

    Article  ADS  Google Scholar 

  36. E.L. Ivchenko, G.E. Pikus, Pis’ma Zh. Eksp. Teor. Fiz. 27, 640 (1978); Sov. Phys.JETP Lett. 27, 604 (1978)

    Google Scholar 

  37. V.I. Belinicher, Phys. Lett. A 66, 213 (1978); V.I. Belinicher, B.I. Sturman, Usp. Fiz. Nauk 130, 415 (1980)

    Google Scholar 

  38. V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, Solid State Commun. 30, 565 (1979)

    Article  ADS  Google Scholar 

  39. M. I. Dyakonov, V. Yu. Kachorovskii, Fiz. Techn. Poluprov. 20, 178 (1986); Sov. Phys. Semicond. 20, 110 (1986)

    Google Scholar 

  40. F.J. Ohkawa, Y.J. Uemura, J. Phys. Soc. Jpn. 37, 1325 (1974)

    Article  ADS  Google Scholar 

  41. F.T. Vasko, Pis’ma Zh. Eksp. Teor. Fiz. 30, 574 (1979); Sov. Phys. JETP Lett. 30, 541 (1979)

    Google Scholar 

  42. V.K. Kalevich, V.L. Korenev, I.A. Merkulov, Solid State Commun. 91, 559 (1994)

    Article  ADS  Google Scholar 

  43. V.L. Korenev, Phys. Rev. B 74, 041308(R) (2006)

    Article  ADS  Google Scholar 

  44. N.A. Sinitsyn, J. Phys. Condens. Matter 20, 023201 (2008)

    Article  ADS  Google Scholar 

  45. N.F. Mott, Proc. R. Soc. A 124, 425 (1929)

    Article  ADS  Google Scholar 

  46. L. Berger, Phys. Rev. B 2, 4559 (1970); ibid 6, 1862 (1972)

    Google Scholar 

  47. S. Murakami, N. Nagaosa, S.-C. Zhang, Science 301, 1348 (2003)

    Article  ADS  Google Scholar 

  48. J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T. Jungwirth, A.H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  49. L.D. Landau, E.M. Lifshits, Quantum Mechanics. Non-relativistic Theory, 3rd edn. (Elsevier Science, Oxford, 1977)

    Google Scholar 

  50. V.N. Abakumov, I.N. Yassievich, Zh. Eksp. Teor. Fiz. 61, 2571 (1971); Sov. Phys. JETP 34, 1375 (1971)

    Google Scholar 

  51. P. Nozières, C. Lewiner, J. Physique (Paris) 34, 901 (1973)

    Article  Google Scholar 

  52. S.K. Lyo, T. Holstein, Phys. Rev. Lett. 29, 423 (1972)

    Article  ADS  Google Scholar 

  53. V.F. Gantmakher, Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987)

    Google Scholar 

  54. P.M. Levy, H. Yang, M. Chshiev, A. Fert, Phys. Rev. B 88, 214432 (2013)

    Article  ADS  Google Scholar 

  55. E.G. Mishchenko, A.V. Shytov, B.I. Halperin, Phys. Rev. Lett. 93, 226602 (2004)

    Article  ADS  Google Scholar 

  56. O.V. Dimitrova, Phys. Rev. B 71, 245327 (2005)

    Article  ADS  Google Scholar 

  57. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  58. A.V. Shytov, E.G. Mishchenko, H.-A. Engel, B.I. Halperin, Phys. Rev. B 73, 075316 (2006)

    Article  ADS  Google Scholar 

  59. A. Khaetskii, Phys. Rev. B 73, 115323 (2006)

    Article  ADS  Google Scholar 

  60. A. Khaetskii, Phys. Rev. B 89, 195408 (2014)

    Article  ADS  Google Scholar 

  61. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  62. F.D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004)

    Article  ADS  Google Scholar 

  63. V.A. Zyuzin, P.G. Silvestrov, E.G. Mishchenko, Phys. Rev. Lett. 99, 106601 (2007)

    Article  ADS  Google Scholar 

  64. A. Khaetskii, E. Sukhorukov, Pis’ma Zh. Eksp. Teor. Fiz. 92, 273 (2010); JETP Lett. 92, 244 (2010)

    Google Scholar 

  65. A. Khaetskii, E. Sukhorukov, Phys. Rev. B 87, 075303 (2013)

    Article  ADS  Google Scholar 

  66. K. Nomura, J. Wunderlich, J. Sinova, B. Kaestner, A.H. MacDonald, T. Jungwirth, Phys. Rev. B 72, 245330 (2005)

    Google Scholar 

  67. F.G.G. Hernandez, L.M. Nunes, G.M. Gusev, A.K. Bakarov, Phys. Rev. B 88, 161305(R) (2013)

    Article  ADS  Google Scholar 

  68. A. Khaetskii, J.C. Egues EPL, 118, 57006 (2017)

    Google Scholar 

  69. E. Bernardes, J. Schliemann, M. Lee, J.C. Egues, D. Loss, Phys. Rev. Lett. 99, 076603 (2007)

    Google Scholar 

  70. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015)

    Article  ADS  Google Scholar 

  71. V. Sih, V.H. Lau, R.C. Myers, V.R. Horowitz, A.C. Goassard, D.D. Awschalom, Phys. Rev. Lett. 97, 096605 (2006)

    Article  ADS  Google Scholar 

  72. S.O. Valenzuela, M. Tinkham, Nature 442, 176 (2006)

    Article  ADS  Google Scholar 

  73. V. Sih, R.C. Myers, Y.K. Kato, W.H. Lau, A.C. Gossard, D.D. Awschalom, Nat. Phys. 1, 31 (2005)

    Article  Google Scholar 

  74. T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007)

    Article  ADS  Google Scholar 

  75. N.P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, D.D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006)

    Article  ADS  Google Scholar 

  76. M.I. Dyakonov, V.I. Perel, Decay of atomic polarization moments, in Proceedings of 6th International Conference on Atomic Physics (Riga, 1978), p. 410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dyakonov .

Editor information

Editors and Affiliations

Appendix: The Generalized Kinetic Equation

Appendix: The Generalized Kinetic Equation

The Boltzmann equation, generalized for the existence of spin and taking account of the spin-orbit interaction is probably the best, most simple, and economic theoretical tool for studying spin phenomena in conditions when the orbital motion can be considered classically (when, for example, the Landau quantization is not important). It can be derived from the quantum equation for the one-particle density matrix \(\hat{\rho }_{\varvec{p}_1,\varvec{p}_2} (t)\). We use the momentum representation, hats indicate matrices in spin indices.

$$\begin{aligned} i\hbar \frac{\partial \hat{\rho }}{\partial t}=[\hat{H},\hat{\rho }]. \end{aligned}$$
(8.58)

To approach classical physics, one indtroduces the Wigner density matrix \(\hat{\rho }(\varvec{r},\varvec{p},t)\), by putting \(\varvec{p}=(\varvec{p}_1+\varvec{p}_2)/2\), \(\varvec{\kappa }= \varvec{p}_1-\varvec{p}_2\) and doing the Fourier transform over \(\varvec{\kappa }\):

$$\begin{aligned} \hat{\rho }(\varvec{r},\varvec{p},t)= \int \exp (i\varvec{\kappa }\varvec{r}/\hbar ) \hat{\rho }_{\varvec{p}+\varvec{\kappa }/2, \varvec{p}-\varvec{\kappa }/2} (t) \frac{d^3\varvec{\kappa }}{(2\pi \hbar )^3}. \end{aligned}$$
(8.59)

Consider a Hamiltonian \(\hat{H}(\varvec{p})\) describing the electron spin band splitting and the interaction with an external electric field \(\varvec{E}\) (e is the absolute value of the electron charge):

$$\begin{aligned} \hat{H}(\varvec{p})= \frac{p^2}{2m}+\hbar \varvec{\varOmega }(\varvec{p})\hat{\varvec{s}}+e\varvec{E}\varvec{r}. \end{aligned}$$
(8.60)

Using (8.58) and (8.60) one can derive the kinetic equation for \(\hat{\rho }(\varvec{r},\varvec{p},t)\):

$$\begin{aligned} \frac{\partial \hat{\rho }}{\partial t} +\{\hat{\varvec{v}},\nabla \hat{\rho }\}- e\varvec{E}\frac{\partial \hat{\rho }}{\partial \varvec{p}} + i[\varvec{\varOmega }(\varvec{p})\hat{\varvec{s}}, \hat{\rho }] = \hat{I}\{\hat{\rho }\}, \end{aligned}$$
(8.61)

where \(\{A,B\}=(AB+BA)/2\) and \(\hat{\varvec{v}}=\partial \hat{H}(\varvec{p})/\partial \varvec{p}\) is the electron velocity, which is a matrix in spin indices. The left-hand side of (8.61) follows exactly from (8.58). The right-hand side is the collision integral, which is added “by hand” (like in the conventional Boltzmann equation).Footnote 22 One has to evaluate the change of the density matrix, \(\delta \hat{\rho }\), during one collision and make a sum over all collisions per unit time.

Spin-orbit interaction (8.36) during the act of an individual collision makes the integral operator \(\hat{I}\) a matrix with 4 spin indices. For elastic collisions with impurities and if the effect of band splitting can be neglected while considering individual collisions, we have [76]:

$$\begin{aligned} \hat{I}\{\hat{\rho }(\varvec{p})\}_{\mu \mu '}=\int d\varOmega _{\varvec{p'}}\{ W^{\mu \mu '}_{\mu _1\mu '_1}\cdot \rho _{\mu _1\mu '_1}(\varvec{p'})- \frac{1}{2} [W^{\mu \mu _1}_{\mu _2 \mu _2} \cdot \rho _{\mu _1\mu '}({\varvec{p}}) + \rho _{\mu \mu _1}({\varvec{p}}) \cdot W^{\mu _1 \mu '}_{\mu _2 \mu _2} ] \}. \end{aligned}$$
(8.62)

Here the summation over repeated indices is implied. This expression is the generalization of the Boltzmann collision integral taking account of spin-orbit effects. If spin-orbit interaction during collisions is neglected, it reduces to the conventional Boltzmann term. The transition probability matrix \(\hat{W}\) can be expressed through the scattering amplitude \(\hat{F}_{\varvec{p'}}^{\varvec{p}}\) given by (8.28):

$$\begin{aligned} W^{\mu \mu '}_{\mu _1\mu '_1}=N v F^{\mu \varvec{p}}_{\mu _1 \varvec{p'}} (F^{\mu ' \varvec{p}}_{\mu _1' \varvec{p'}}) ^{\star }, \end{aligned}$$
(8.63)

where N is the impurity concentration, \(v=p/m=p'/m\) is the electron velocity, and \(F^{\mu \varvec{p}}_{\mu _1 \varvec{p'}}\) is the scattering amplitude for the transition from the initial state \(\mu _1 \varvec{p'}\) to the final state \(\mu \varvec{p}\).

The question of whether or not the spin band splitting can be neglected, while considering collisions, is a subtle one, especially when dealing with non-diagonal in band indices elements of the density matrix.Footnote 23

Equation 8.61 resembles the usual Boltzmann equation, the main differences being the form of the collision integral and the additional commutator term due to the spin band splitting. It can be separated into two coupled equations by putting \(\hat{\rho }=(1/2)f\hat{\mathcal{I}}+ 2\varvec{S}\hat{\varvec{s}}\), where the particle and spin distributions in phase space are related to \(\hat{\rho }\) by the relations:

$$\begin{aligned} f(\varvec{r},\varvec{p},t)=\text {Tr}(\hat{\rho }), \qquad \varvec{S}(\varvec{r},\varvec{p},t)=\text {Tr}(\hat{\varvec{s}} \hat{\rho }). \end{aligned}$$
(8.64)

The spin polarization density \(\varvec{P}(\varvec{r})\) used in this chapter is related to the distribution \(\varvec{S}\) by \(\varvec{P}(\varvec{r})=2\int \varvec{S}(\varvec{r},\varvec{p})d^3 \varvec{p}\). The equations for f and \(\varvec{S}\) can be derived from (8.61):

$$\begin{aligned} \frac{\partial f}{\partial t} + \frac{p_i}{m}\frac{\partial f}{\partial x_i}- eE_i\frac{\partial f}{\partial p_i} + \frac{\partial \varOmega _j}{\partial p_i} \frac{\partial S_j}{\partial x_i}= \text {Tr}(\hat{I}), \end{aligned}$$
(8.65)
$$\begin{aligned} \frac{\partial S_k}{\partial t} + \frac{p_i}{m}\frac{\partial S_k}{\partial x_i} - eE_i\frac{\partial S_k}{\partial p_i} + \frac{1}{4}\frac{\partial \varOmega _k}{\partial p_i} \frac{\partial f}{\partial x_i} - [\varvec{\varOmega }(\varvec{p}) \times \varvec{S}]_k = \text {Tr}(\hat{s}_k \hat{I}). \end{aligned}$$
(8.66)

These equations are further simplified in the spatially homogeneous situation.

They contain most of the relevant spin physics in semiconductors: spin relaxation, spin diffusion, coupling between spin and charge currents (due to skew scattering, as well as intrinsic), etc. After including magnetic field in the usual manner, they can be used to study magnetic effects in spin relaxation and spin transport. Similar, but more complicated, equations were derived and analysed for \(J=3/2\) holes in the valence band and carriers in a gapless semiconductor [26]. Compared to other, more sophisticated techniques, the approach based on the kinetic equation, has the advantage of being much more transparent and of allowing to use the physical intuition accumulated in dealing with the Boltzmann equation. It also avoids invoking quantum mechanics where it is not really necessary.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dyakonov, M.I., Khaetskii, A.V. (2017). Spin Hall Effect. In: Dyakonov, M. (eds) Spin Physics in Semiconductors. Springer Series in Solid-State Sciences, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-65436-2_8

Download citation

Publish with us

Policies and ethics