Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

These are the expanded notes of a course given at the Summer school “Geometric, topological, and algebraic methods for quantum field theory” held at Villa de Leyva, Colombia, in July 2015. We first give an introduction to non-commutative geometry and to the language of Hopf algebras. We next build up a theory of non-commutative principal fiber bundles and consider various aspects of such objects. Finally, we illustrate the theory using the quantum enveloping algebra \(U_q\, {\mathfrak {s}}\text {l}(2)\) and related Hopf algebras.

Al álgebra le dediqué mis mejores ánimos,

no sólo por respeto a su estirpe clásica

sino por mi cariño y mi terror al maestro.

Gabriel García Márquez,

Vivir para contarla [21]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, there exists a continuous map \(\Phi : X' \times [0,1] \rightarrow X\) such that \(\Phi (x,0) = \varphi _0(x)\) and \(\Phi (x,1) = \varphi _1(x)\) for all \(x\in X'\).

  2. 2.

    Recall that \(\delta _{x,y} = 1\) if \(x = y\) and \(\delta _{x,y} = 0\) otherwise.

  3. 3.

    Drinfeld along with other invited mathematicians from the Soviet Union was prevented by the Soviet authorities to attend the conference; in Drinfeld’s absence his contribution was read by Cartier.

  4. 4.

    The concept of enveloping algebra of a Lie algebra is a classical concept of the theory of Lie algebras; see for instance [15, 28, 31, 54]. The relationship between the quantum enveloping algebra \(U_q\, {\mathfrak {s}}\text {l}(2)\) and the enveloping algebra of the Lie algebra \({\mathfrak {s}}\text {l}(2)\) is explained in [31, VI.2].

  5. 5.

    The concept of the cotensor product of comodules was first introduced in [20]. See also [46, 58].

  6. 6.

    For this to hold we need the extra faithful flatness condition mentioned in Sect. 3.7.1, Remark 3.5.

  7. 7.

    The Krull dimension of \(\mathscr {B}_H\) is the dimension of the algebraic variety V such that \(\mathscr {B}_H = \mathscr {O}(V)\).

References

  1. E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74 (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  2. E. Aljadeff, C. Kassel, Polynomial identities and noncommutative versal torsors. Adv. Math. 218, 1453–1495 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Aljadeff, D. Haile, M. Natapov, Graded identities of matrix algebras and the universal graded algebra. Trans. Am. Math. Soc. 362, 3125–3147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Aubriot, Classification des objets galoisiens de \(U_q(\mathfrak{g})\) à homotopie près. Commun. Algebra 35, 3919–3936 (2007)

    Google Scholar 

  5. J. Bichon, Galois and bigalois objects over monomial non-semisimple Hopf algebras. J. Algebra Appl. 5, 653–680 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bichon, Hopf-Galois objects and cogroupoids. Rev. Un. Mat. Argentina 5, 11–69 (2014)

    MATH  MathSciNet  Google Scholar 

  7. R.J. Blattner, S. Montgomery, A duality theorem for Hopf module algebras. J. Algebra 95, 153–172 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. K.S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87 (Springer, New York, 1982)

    Google Scholar 

  9. T. Brzeziński, S. Majid, Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993). Erratum: 167, 235 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. S. Caenepeel, Brauer Groups, Hopf Algebras and Galois Theory (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  MATH  Google Scholar 

  11. V. Chari, A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  12. S.U. Chase, M.E. Sweedler, Hopf Algebras and Galois Theory, vol. 97, Lecture Notes in Mathematics (Springer, Berlin, 1969)

    MATH  Google Scholar 

  13. A. Connes, Noncommutative Geometry (Academic Press Inc, San Diego, 1994)

    MATH  Google Scholar 

  14. L. Dąbrowski, H. Grosse, P.M. Hajac, Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 220, 301–331 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. J. Dixmier, Enveloping Algebras (North-Holland Publ. Co, Amsterdam, 1977)

    MATH  Google Scholar 

  16. Y. Doi, M. Takeuchi, Quaternion algebras and Hopf crossed products. Commun. Algebra 23, 3291–3325 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR 283, 1060–1064 (1985). English translation: Soviet Math. Dokl. 32, 254–258 (1985)

    MathSciNet  Google Scholar 

  18. V.G. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pp. 798–820. Amer. Math. Soc., Providence, RI (1987)

    Google Scholar 

  19. M. Đurđević, Quantum principal bundles as Hopf-Galois extensions (1995), arXiv:q-alg/9507022

  20. S. Eilenberg, J.C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors. Comment. Math. Helv. 40, 199–236 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  21. G. García Márquez, Vivir para contarla (Editorial Diana, México, 2002)

    Google Scholar 

  22. P. Guillot, C. Kassel, A. Masuoka, Twisting algebras using non-commutative torsors: explicit computations. Math. Z. 271, 789–818 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Gutt, Deformation quantization and group actions, this volume

    Google Scholar 

  24. P.M. Hajac, Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. P.M. Hajac, S. Majid, Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. D. Husemoller, Fibre Bundles, 3rd edn., Graduate Texts in Mathematics 20 (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  27. U.N. Iyer, C. Kassel, Generic base algebras and universal comodule algebras for some finite-dimensional Hopf algebras Trans. Am. Math. Soc. 367, 8465–8486 (2015)

    Article  MATH  Google Scholar 

  28. N. Jacobson, Lie Algebras (Dover Publications, New York, 1979)

    MATH  Google Scholar 

  29. J.C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics 6 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  30. M. Jimbo, A \(q\)-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155 (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  32. C. Kassel, Quantum principal bundles up to homotopy equivalence, in The Legacy of Niels Henrik Abel, The Abel Bicentennial, Oslo, 2002, ed. by O.A. Laudal, R. Piene (Springer, New York, 2004), pp. 737–748, arXiv:math.QA/0507221

  33. C. Kassel, Hopf algebras and polynomial identities, in Quantum Groups and Quantum Topology, RIMS Kôkyûroku 1714 (2010), pp. 49–62, arXiv:1009.3180

  34. C. Kassel, Generic Hopf Galois extensions, in Quantum Groups and Noncommutative Spaces, Aspects Math. E41 (Vieweg + Teubner, Wiesbaden, 2011), pp. 104–120, arXiv:0809.0638

  35. C. Kassel, A. Masuoka, Flatness and freeness properties of the generic Hopf Galois extensions. Rev. Un. Mat. Argentina 51, 79–94 (2010), arXiv:0911.3719

  36. C. Kassel, A. Masuoka, The Noether problem for Hopf algebras. J. Noncommut. Geom. (2016), arXiv:1404.4941

  37. C. Kassel, H.-J. Schneider, Homotopy theory of Hopf Galois extensions. Ann. Inst. Fourier (Grenoble) 55, 2521–2550 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. C. Kassel, M. Rosso, V. Turaev, Quantum Groups and Knot Invariants, Panoramas et Synthèses 5 (Société Mathématique de France, Paris, 1997)

    MATH  Google Scholar 

  39. P.P. Kulish, N.Y. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101, 101–110 (1981). English translation: J. Soviet Math. 23, 2435–2441 (1983)

    MathSciNet  Google Scholar 

  40. G. Landi, W. van Suijlekom, Principal fibrations from noncommutative spheres. Commun. Math. Phys. 260, 203–225 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. G. Landi, C. Pagani, C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group. Commun. Math. Phys. 263, 65–88 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics 110 (Birkhäuser Boston, Inc., Boston, 1993)

    MATH  Google Scholar 

  43. S. Majid, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  44. A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element. Commun. Algebra 22, 4537–4559 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Masuoka, Abelian and non-abelian second cohomologies of quantized enveloping algebras. J. Algebra 320, 1–47 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. S. Montgomery, Hopf Algebras and Their Actions on Rings, vol. 82, CBMS Regional Conference Series in Mathematics (American Mathematical Society, Providence, 1993)

    MATH  Google Scholar 

  47. A. Nenciu, Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions. Commun. Algebra 29, 1959–1981 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. F. Panaite, F. Van Oystaeyen, Clifford-type algebras as cleft extensions for some pointed Hopf algebras. Commun. Algebra 28, 585–600 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. M.J. Pflaum, Quantum groups on fibre bundles. Commun. Math. Phys. 166, 279–315 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. P. Podleś, Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. N.Y. Reshetikhin, L.A. Takhtadzhyan, L.D. Faddeev, Quantization of Lie groups and Lie algebras. Algebra i Analiz 1, 178–206 (1989). English translation: Leningrad Math. J. 1, 193–225 (1990)

    MATH  MathSciNet  Google Scholar 

  52. D. Rumynin, Hopf-Galois extensions with central invariants and their geometric properties. Algebr. Represent. Theory 1, 353–381 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  53. H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  54. J.-P. Serre, Lie Algebras and Lie Groups (W. A. Benjamin Inc., New York, 1965)

    MATH  Google Scholar 

  55. A. Sitarz, Pointless geometry, in Mathematical Structures of the Universe (Copernicus Center Press, 2014)

    Google Scholar 

  56. E.K. Sklyanin, On an algebra generated by quadratic relations. Uspekhi Mat. Nauk 40, 214 (1985). (in Russian)

    Google Scholar 

  57. N. Steenrod, The Topology of Fibre Bundles, vol. 14, Princeton Mathematical Series (Princeton University Press, Princeton, 1951)

    Book  MATH  Google Scholar 

  58. M.E. Sweedler, Hopf Algebras (W. A. Benjamin Inc., New York, 1969)

    MATH  Google Scholar 

  59. M. Takeuchi, Free Hopf algebras generated by coalgebras. J. Math. Soc. Japan 23, 561–582 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  60. M. Takeuchi, Some topics on \(GL_q(n)\). J. Algebra 147, 379–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  61. S.L. Woronowicz, Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the organizers of the Summer school “Geometric, topological and algebraic methods for quantum field theory” held at Villa de Leyva, Colombia, in July 2015 for inviting me to give the course that led to these notes. I am also grateful to the students for their feedback and to Sylvie Paycha for her careful reading of these notes and her suggestions. Finally let me mention the travel support I received from the Institut de Recherche Mathématique Avancée in Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kassel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kassel, C. (2017). Principal Fiber Bundles in Non-commutative Geometry. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes Lega, A. (eds) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-65427-0_3

Download citation

Publish with us

Policies and ethics