An Agent-Based Model Predicting Group Emotion and Misbehaviours in Stranded Passengers

  • Lenin MedeirosEmail author
  • C. Natalie van der Wal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)


Airline passengers can get stranded in an airport due to a number of reasons. As a consequence, they might get frustrated. Frustration leads to misbehaving if a given individual is frustrated enough, according to the literature. In this work, an agent-based model of stranded passengers in an airport departure area is presented. Structured simulations show how personal and environmental characteristics such as age, gender and emotional contagion, among others, influence the frustration dynamics, number and type of misbehaviours in such a scenario. We also present simulation results with two implemented support models (a chatbot and multilingual staff) aiming to reduce the overall frustration level of passengers facing this type of situation. Important findings are that: men are more likely to use force than women, the crowd composition plays an important role in terms of misbehaviours, the effect of emotional contagion leads to more misbehaviours and a chatbot might be considered as an alternative for supporting stranded passengers.


Computational modelling Multi-agent based modelling Emotional contagion Misbehaviour prediction Crime prevention Chatbots 



This research was undertaken as part of the EU HORIZON 2020 Project IMPACT (GA 653383) and Science without Borders – CNPq (scholarship reference: 235134/2014-7). We would like to thank our Consortium Partners and stakeholders for their input as well as the Brazilian Government.


  1. 1.
    Berkowitz, L.: Frustration-aggression hypothesis: examination and reformulation. Psychol. Bull. 106(1), 59 (1989)CrossRefGoogle Scholar
  2. 2.
    Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: Agent-based modeling of emotion contagion in groups. Cogn. Comput. 7(1), 111–136 (2015)CrossRefGoogle Scholar
  3. 3.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J., van der Wal, C.N., Van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agents Multi-Agent Syst. 27, 1–33 (2013)CrossRefGoogle Scholar
  4. 4.
    Challenger, R., Clegg, C.W., Robinson, M.A.: Understanding Crowd Behaviours. Supporting Theory and Evidence, vol. 2. The Stationery Office (TSO), London (2010)Google Scholar
  5. 5.
    Crystal, D.: Two thousand million? Engl. Today 24(01), 3–6 (2008)CrossRefGoogle Scholar
  6. 6.
    De Wulf, M.: Population pyramids of the world from 1950 to 2100 (2016)Google Scholar
  7. 7.
    DeVault, D., Artstein, R., Benn, G., Dey, T., Fast, E., Gainer, A., Georgila, K., Gratch, J., Hartholt, A., Lhommet, M., et al.: SimSensei Kiosk: a virtual human interviewer for healthcare decision support. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 1061–1068. IFAAMAS (2014)Google Scholar
  8. 8.
    Drury, J., Cocking, C., Reicher, S.: Everyone for themselves? A comparative study of crowd solidarity among emergency survivors. Br. J. Soc. Psychol. 48(3), 487–506 (2009)CrossRefGoogle Scholar
  9. 9.
    Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL 1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). doi: 10.1007/3-540-49057-4_1CrossRefGoogle Scholar
  10. 10.
    Jackson II, R.L., Hogg, M.A.: Encyclopedia of Identity, vol. 1. Sage, Thousand Oaks (2010)CrossRefGoogle Scholar
  11. 11.
    Kim, H.S., Sherman, D.K., Taylor, S.E.: Culture and social support. Am. Psychol. 63(6), 518 (2008)CrossRefGoogle Scholar
  12. 12.
    Marsella, S., Gratch, J., Petta, P., et al.: Computational models of emotion. Bluepr. Affect. Comput. Sourceb. Man. 11(1), 21–46 (2010)Google Scholar
  13. 13.
    Medeiros, L., Bosse, T.: Empirical analysis of social support provided via social media. In: Spiro, E., Ahn, Y.-Y. (eds.) SocInfo 2016. LNCS, vol. 10047, pp. 439–453. Springer, Cham (2016). doi: 10.1007/978-3-319-47874-6_30CrossRefGoogle Scholar
  14. 14.
    Medeiros, L., Sikkes, R., Treur, J.: Modelling a mutual support network for coping with stress. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9875, pp. 64–77. Springer, Cham (2016). doi: 10.1007/978-3-319-45243-2_6CrossRefGoogle Scholar
  15. 15.
    Mileti, D.S.: Factors related to flood warning response. In: US-Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods, pp. 1–17. Citeseer (1995)Google Scholar
  16. 16.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1995)Google Scholar
  17. 17.
    Reicher, S., Drury, J.: Social identity and social change: rethinking the context of social psychology (1996)Google Scholar
  18. 18.
    Ronen, S., Shenkar, O.: Mapping world cultures: cluster formation, sources and implications. J. Int. Bus. Stud. 44(9), 867–897 (2013)CrossRefGoogle Scholar
  19. 19.
    Tajfel, H.: Social Identity and Intergroup Relations. Cambridge University Press, Cambridge (2010)Google Scholar
  20. 20.
    Tsai, J., Bowring, E., Marsella, S., Tambe, M.: Empirical evaluation of computational emotional contagion models. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 384–397. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23974-8_42CrossRefGoogle Scholar
  21. 21.
    van der Wal, C.N., Couwenberg, M., Bosse, T.: Getting frustrated: modelling emotional contagion in stranded passengers. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS, vol. 10350, pp. 611–619. Springer, Cham (2017). doi: 10.1007/978-3-319-60042-0_67CrossRefGoogle Scholar
  22. 22.
    van der Zwaan, J.M., Dignum, V., Jonker, C.M.: A conversation model enabling intelligent agents to give emotional support. In: Ding, W., Jiang, H., Ali, M., Li, M. (eds.) Modern Advances in Intelligent Systems and Tools. Studies in Computational Intelligence, vol. 431, pp. 47–52. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30732-4_6CrossRefGoogle Scholar
  23. 23.
    Veenema, T.G.: Disaster Nursing and Emergency Preparedness: for Chemical, Biological, and Radiological Terrorism and Other Hazards. Springer Publishing Company, New York (2012)CrossRefGoogle Scholar
  24. 24.
    Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, Cambridge (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamNetherlands

Personalised recommendations