Skip to main content

Sustainable Operations of Closed-Loop Logistics Chain from an Economic and Environmental Performance Perspective

  • Chapter
  • First Online:
  • 1015 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 128))

Abstract

With increasingly scarce global resources, gradually worsening waste emissions, and rising environmental protection awareness, an increasing number of countries enacted strict regulations to protect the environment; in addition, the issues on recycling and reusing used products have caught worldwide attention. Adapting to environmental protection and consumer requirements has compelled manufacturers and distributors to formulate forward and reverse logistics networks (RLNs) simultaneously. Moreover, the increasingly transparent contradiction between the supply and demand of resources coincides with the enterprises’ experience of growing cost pressures, for which recycling and remanufacturing gradually became important techniques to reduce the production cost. Under this background, the closed-loop logistics (CLL) has received significant attention from the academia and industry. In this chapter, we defined the related concepts with CLL; proposed the theoretical framework, including the CLL network structure and sustainable operations of logistics; and analyzed the effect of CLL on manufacturing, services, and people’s lives with a special focus on the main sustainable operations, namely, recycling and remanufacturing. The results revealed that implementing CLL management became a strategic choice for many enterprises, with its vital significance to decrease waste emissions, protect the environment, reduce production costs, improve economic efficiency, enhance competitiveness, promote enterprise technology innovation, and strengthen environmental protection.

This is a preview of subscription content, log in via an institution.

References

  1. Aksen, D., Aras, N., Karaarslan, A.G.: Design and analysis of government subsidized collection systems for incentive-dependent returns. Int. J. Prod. Econ. 119(2), 308–327 (2009)

    Article  Google Scholar 

  2. Atasu, A., Subramanian, R.: Extended producer responsibility for E-waste: individual or collective producer responsibility? Prod. Oper. Manag. 21(6), 1042–1059 (2012)

    Article  Google Scholar 

  3. Atasu, A., Wassenhove, L.N.: An operations perspective on product take-back legislation for E-waste: theory, practice, and research needs. Prod. Oper. Manag. 21(3), 407–422 (2012)

    Article  Google Scholar 

  4. Atasu, A., Wassenhove, L.N., Sarvary, M.: Efficient take-back legislation. Prod. Oper. Manag. 18(3), 243–258 (2009)

    Article  Google Scholar 

  5. Atasu, A., Özdemir, Ö., Van Wassenhove, L.N.: Stakeholder perspectives on E-waste take-back legislation. Prod. Oper. Manag. 22(2), 382–396 (2013)

    Article  Google Scholar 

  6. Barari, S., Agarwal, G., Zhang, W.C., Mahanty, B., Tiwari, M.K.: A decision framework for the analysis of green supply chain contracts: an evolutionary game approach. Expert Syst Appl. 39(3), 2965–2976 (2012)

    Article  Google Scholar 

  7. Baumgarten, H., Butz, C., Fritsch, A., et al.: Supply chain management and reverse logistics-integration of reverse logistics processes into supply chain management approaches. In: Electronics and the Environment. IEEE International Symposium on IEEE, pp. 79–83 (2003)

    Google Scholar 

  8. Benz, E., Trück, S.: Modeling the price dynamics of CO2 emission allowances. Energy Econ. 31(1), 4–15 (2009)

    Article  Google Scholar 

  9. Bulmuş, S.C., Zhu, S.X., Teunter, R.: Capacity and production decisions under a remanufacturing strategy. Int. J. Prod. Econ. 145(1), 359–370 (2013)

    Article  Google Scholar 

  10. Chang, X., Xia, H., Zhu, H., et al.: Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism. Int. J. Prod. Econ. 162, 160–173 (2015)

    Article  Google Scholar 

  11. Chao, G.H., Iravani, S.M.R., Savaskan, R.C.: Quality improvement incentives and product recall cost sharing contracts. Manag. Sci. 55(7), 1122–1138 (2009)

    Article  MATH  Google Scholar 

  12. Choi, T.M., Li, Y., Xu, L.: Channel leadership, performance and coordination in closed loop supply chains. Int. J. Prod. Econ. 146(1), 371–380 (2013)

    Article  Google Scholar 

  13. Cooper, M.: Renewable and distributed resources in a post-Paris low carbon future: the key role and political economy of sustainable electricity. Energy Res. Soc. Sci. 19, 66–93 (2016)

    Article  Google Scholar 

  14. Dales, J.H.: Pollution. University of Toronto Press, Toronto (1968)

    Google Scholar 

  15. De Giovanni, P., Reddy, P.V., Zaccour, G.: Incentive strategies for an optimal recovery program in a closed-loop supply chain. Eur. J. Oper. Res. 249(2), 605–617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dowlatshahi, S.: Developing a theory of reverse logistics. Dermatol. Int. 30(3), 143–155 (2000)

    Google Scholar 

  17. Fahimnia, B., Farahani, R.Z., Marian, R., Luong, L.: A review and critique on integrated production–distribution planning models and techniques. J. Manuf. Syst. 32(1), 1–19 (2013)

    Article  Google Scholar 

  18. Feng, L.P., Kannan, G., Li, C.F.: Strategic planning: design and coordination for dual-recycling channel reverse supply chain considering consumer behavior. Eur. J. Oper. Res. 260(2), 601–612 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ferguson, M.: Strategic and tactical aspects of closed-loop supply chains. Foundations and trends® in technology. Inf. Oper. Manag. 3(2), 101–200 (2010)

    MathSciNet  Google Scholar 

  20. Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R., et al.: Quantitative models for reverse logistics: a review. Eur. J. Oper. Res. 103(1), 1–17 (1997)

    Article  MATH  Google Scholar 

  21. Galinato, G.I., Yoder, J.K.: An integrated tax-subsidy policy for carbon emission reduction. Resour. Energy Econ. 32(3), 310–326 (2010)

    Article  Google Scholar 

  22. Georgiadis, P., Besiou, M.: Environmental and economical sustainability of WEEE closed-loop supply chains with recycling: a system dynamics analysis. Int. J. Adv. Manuf. Technol. 47(5–8), 475–493 (2010)

    Article  Google Scholar 

  23. Giannetti, B.F., Bonilla, S.H., Almeida, C.M.V.B.: An emergy-based evaluation of a reverse logistics network for steel recycling. J. Clean. Prod. 46, 48–57 (2013)

    Article  Google Scholar 

  24. Giri, B.C., Sharma, S.: Optimizing a closed-loop supply chain with manufacturing defects and quality dependent return rate. J. Manuf. Syst. 35, 92–111 (2015)

    Article  Google Scholar 

  25. Giutini, R., Gaudette, K.: Remanufacturing: the next great opportunity for boosting US productivity. Bus. Horiz. 46(6), 41–48 (2003)

    Article  Google Scholar 

  26. Govindan, K., Popiuc, M.N.: Reverse supply chain coordination by revenue sharing contract: a case for the personal computers industry. Eur. J. Oper. Res. 233(2), 326–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Govindan, K., Khodaverdi, R., Jafarian, A.: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354 (2013)

    Article  Google Scholar 

  28. Guide Jr., V.D.R.: Production planning and control for remanufacturing: industry practice and research needs. J. Oper. Manag. 18(4), 467–483 (2000)

    Article  Google Scholar 

  29. Guide, V.D.R., Wassenhove, L.N.: Managing product returns for remanufacturing. Prod. Oper. Manag. 10(2), 142–155 (2001)

    Article  Google Scholar 

  30. Guide, V.D.R., Wassenhove, L.N.: Business Aspects of Closed-Loop Supply Chains. Carnegie Mellon University Press, Pittsburgh (2003)

    MATH  Google Scholar 

  31. Guide Jr., V.D.R., Srivastava, R., Spencer, M.S.: An evaluation of capacity planning techniques in a remanufacturing environment. Int. J. Prod. Res. 35(1), 67–82 (1997)

    Article  MATH  Google Scholar 

  32. Gungor, A., Gupta, S.M.: Issues in environmentally conscious manufacturing and product recovery: a survey. Comput. Ind. Eng. 36(4), 811–853 (1999)

    Article  Google Scholar 

  33. He, P., Zhang, W., Xu, X., Bian, Y.: Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. J. Clean. Prod. 103(15), 241–248 (2015)

    Article  Google Scholar 

  34. Huang, P., Zhang, X., Deng, X.: Survey and analysis of public environmental awareness and performance in Ningbo, China: a case study on household electrical and electronic equipment. J. Clean. Prod. 14(18), 1635–1643 (2006)

    Article  Google Scholar 

  35. Ilgin, M.A., Gupta, S.M.: Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J. Environ. Manage. 91(3), 563–591 (2010)

    Article  Google Scholar 

  36. International Energy Agency. Office of Energy Technology, R & D., & Group of Eight (Organization). Energy technology perspectives. Int. Energy Agency. (2008)

    Google Scholar 

  37. Jaehn, F., Letmathe, P.: The emissions trading paradox. Eur. J. Oper. Res. 202(1), 248–254 (2010)

    Article  MATH  Google Scholar 

  38. Kannan, D., Govindan, K., Shankar, M.: India: formalize recycling of electronic waste. Nature. 530(7590), 281–281 (2016)

    Article  Google Scholar 

  39. Keyvanshokooh, E., Fattahi, M., Seyed-Hosseini, S.M., et al.: A dynamic pricing approach for returned products in integrated forward/reverse logistics network design. Appl. Math. Model. 37(24), 10182–10202 (2013)

    Article  MathSciNet  Google Scholar 

  40. Kongar, E., Gupta, S.M.: A multi-criteria decision making approach for disassembly-to-order systems. J. Electron. Manuf. 11(02), 171–183 (2002)

    Article  Google Scholar 

  41. Krumwiede, D.W., Sheu, C.: A model for reverse logistics entry by third-party providers. Omega. 30(5), 325–333 (2002)

    Article  Google Scholar 

  42. Lee, D.H., Dong, M.: A heuristic approach to logistics network design for end-of-lease computer products recovery. Transport. Res. Part E Log. Transp. Rev. 44(3), 455–474 (2008)

    Article  Google Scholar 

  43. Lee, D.H., Dong, M.: Dynamic network design for reverse logistics operations under uncertainty. Transp. Res. Part E Log. Transp. Rev. 45(1), 61–71 (2009)

    Article  MathSciNet  Google Scholar 

  44. Li, J., Du, W., Yang, F., Hua, G.: The carbon subsidy analysis in remanufacturing closed-loop supply chain. Sustainability. 6(6), 3861–3877 (2014)

    Article  Google Scholar 

  45. Liu, L., Chen, C., Zhao, Y., et al.: China’s carbon-emissions trading: overview, challenges and future. Renew. Sust. Energ. Rev. 49, 254–266 (2015a)

    Article  Google Scholar 

  46. Liu, B., Holmbom, M., Segerstedt, A., et al.: Effects of carbon emission regulations on remanufacturing decisions with limited information of demand distribution. Int. J. Prod. Res. 53(2), 532–548 (2015b)

    Article  Google Scholar 

  47. Long, T.B., Young, W.: An exploration of intervention options to enhance the management of supply chain greenhouse gas emissions in the UK. J. Clean. Prod. 112, 1834–1848 (2016)

    Article  Google Scholar 

  48. Lu, Q., Christina, V., Stuart, J.A., et al.: A practical framework for the reverse supply chain. In: Electronics and the Environment. ISEE 2000. Proceedings of the 2000 IEEE International Symposium on. IEEE, pp. 266–271 (2000)

    Google Scholar 

  49. Miao, Z., Mao, H., Fu, K., et al.: Remanufacturing with trade-ins under carbon regulations. Comput. Oper. Res. (2016) https://doi.org/10.1016/j.cor.2016.03.014

  50. Palak, G., Ekşioğlu, S.D., Geunes, J.: Analyzing the impacts of carbon regulatory mechanisms on supplier and mode selection decisions: an application to a biofuel supply chain. Int. J. Prod. Econ. 154, 198–216 (2014)

    Article  Google Scholar 

  51. Park, J.Y., Kug, J.S., Bader, J., Rolph, R., Kwon, M.: Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl. Acad. Sci. 112(19), 5921–5926 (2015)

    Article  Google Scholar 

  52. Patel, G.S.: A Stochastic Production Cost Model for Remanufacturing Systems. MS thesis, The University of Texas-Pan American, USA (2006)

    Google Scholar 

  53. Plambeck, E., Wang, Q.: Effects of e-waste regulation on new product introduction. Manag. Sci. 55(3), 333–347 (2009)

    Article  Google Scholar 

  54. Pro-Europe: Packaging waste legislation in Denmark. http://pro-e.org/Denmark (2009)

  55. Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., et al.: From closed-loop to sustainable supply chains: the WEEE case. Int. J. Prod. Res. 48(15), 4463–4481 (2010)

    Article  MATH  Google Scholar 

  56. Rahman, S., Subramanian, N.: Factors for implementing end-of-life computer recycling operations in reverse supply chains. Int. J. Prod. Econ. 140(1), 239–248 (2012)

    Article  Google Scholar 

  57. Savaskan, R.C., Van Wassenhove, L.N.: Reverse channel design: the case of competing retailers. Manag. Sci. 52(1), 1–14 (2006)

    Article  MATH  Google Scholar 

  58. Savaskan, R.C., Bhattacharya, S., Van Wassenhove, L.N.: Closed-loop supply chain models with product remanufacturing. Manag. Sci. 50(2), 239–252 (2004)

    Article  MATH  Google Scholar 

  59. Schultmann, F., Zumkeller, M., Rentz, O.: Modeling reverse logistic tasks within closed-loop supply chains: an example from the automotive industry. Eur. J. Oper. Res. 171(3), 1033–1050 (2006)

    Article  MATH  Google Scholar 

  60. Stavins, R.N.: A meaningful US cap-and-trade system to address climate change. Harv. Environ. Law Rev. 32, 293–371 (2008)

    Google Scholar 

  61. Tian, J., Chen, M.: Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles. Waste Manag. 34(2), 458–467 (2014)

    Article  Google Scholar 

  62. Tonanont, A., Yimsiri, S., Jitpitaklert, W., et al.: Performance evaluation in reverse logistics with data envelopment analysis. In: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE): p. 764 (2008)

    Google Scholar 

  63. Toptal, A., Özlü, H., Konur, D.: Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. Int. J. Prod. Res. 52(1), 243–269 (2014)

    Article  Google Scholar 

  64. Tornese, F., Carrano, A.L., Thorn, B.K., Pazour, J.A., Roy, D.: Carbon footprint analysis of pallet remanufacturing. J. Clean. Prod. 126, 630–642 (2016)

    Article  Google Scholar 

  65. Üster, H., Easwaran, G., Akçali, E., et al.: Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model. Nav. Res. Logist. 54(8), 890–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang, Z., Zhang, B., Yin, J., et al.: Willingness and behavior towards e-waste recycling for residents in Beijing city, China. J. Clean. Prod. 19(9), 977–984 (2011)

    Article  Google Scholar 

  67. Wang, W., Zhang, Y., Zhang, K., et al.: Reward–penalty mechanism for closed-loop supply chains under responsibility-sharing and different power structures. Int. J. Prod. Econ. 170, 178–190 (2015)

    Article  Google Scholar 

  68. Wang, Y., Chen, W., Liu, B.: Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade. J. Clean. Prod. 140, 1118–1128 (2017)

    Article  Google Scholar 

  69. Yang, C.H., Liu, H., Ji, P., et al.: Optimal acquisition and remanufacturing policies for multi-product remanufacturing systems. J. Clean. Prod. 135, 1571–1579 (2016)

    Article  Google Scholar 

  70. Yenipazarli, A.: Managing new and remanufactured products to mitigate environmental damage under emissions regulation. Eur. J. Oper. Res. 249(1), 117–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yin, J., Gao, Y., Xu, H.: Survey and analysis of consumers’ behaviour of waste mobile phone recycling in China. J. Clean. Prod. 65, 517–525 (2014)

    Article  Google Scholar 

  72. Yu, J., Williams, E., Ju, M.: Analysis of material and energy consumption of mobile phones in China. Energy Policy. 38(8), 4135–4141 (2010)

    Article  Google Scholar 

  73. Zakeri, A., Dehghanian, F., Fahimnia, B., Sarkis, J.: Carbon pricing versus emissions trading: a supply chain planning perspective. Int. J. Prod. Econ. 164, 197–205 (2015)

    Article  Google Scholar 

  74. Zhang, B., Xu, L.: Multi-item production planning with carbon cap and trade mechanism. Int. J. Prod Econ. 144(1), 118–127 (2013)

    Article  MathSciNet  Google Scholar 

  75. Zhang, T., Chu, J., Wang, X., Liu, X., Cui, P.: Development pattern and enhancing system of automotive components remanufacturing industry in China. Resour. Conserv. Recycl. 55(6), 613–622 (2011)

    Article  Google Scholar 

  76. Zhang, Y., Kuang, J.C., Wang, C.: Status quo analysis of Chinese and foreign carbon trading market. Foreign Energy Sources. 002, 3 (2014). https://doi.org/10.4337/9781781001882.00008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, B.Y., Yang, H.D. (2017). Sustainable Operations of Closed-Loop Logistics Chain from an Economic and Environmental Performance Perspective. In: Karakitsiou, A., Migdalas, A., Rassia, S., Pardalos, P. (eds) City Networks. Springer Optimization and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-65338-9_7

Download citation

Publish with us

Policies and ethics