Skip to main content

Quadratic Approximation for Log-Likelihood Ratio Processes

  • Conference paper
  • First Online:
Modern Problems of Stochastic Analysis and Statistics (MPSAS 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 208))

Abstract

We consider a sequence of general filtered statistical models with a finite-dimensional parameter. It is tacitly assumed that a proper rescaling of the parameter space is already done (so we deal with a local parameter) and also time rescaling is done if necessary. Our first and main purpose is to give sufficient conditions for the existence of certain uniform in time linear–quadratic approximations of log-likelihood ratio processes. Second, we prove general theorems establishing LAN, LAMN and LAQ properties for these models based on these linear–quadratic approximations. Our third purpose is to prove three theorems related to the necessity of the conditions in our main result. These theorems assert that these conditions are necessarily satisfied if (1) an approximation of a much more general form exists and a (necessary) condition of asymptotic negligibility of jumps of likelihood ratio processes holds, or (2) we have LAN property at every moment of time and the limiting models are continuous in time, or (3) we have LAN property, Hellinger processes are asymptotically degenerate at the terminal times, and the condition of asymptotic negligibility of jumps holds.

Esko Valkeila—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To be more precise, approximations and limits are assumed to be uniform on all compact parameter subsets. The corresponding properties are often called ULAN (uniform LAN), ULAMN, etc. However, we omit the letter ‘U’ in the notation.

References

  1. Fabian, V., Hannan, J.: Local asymptotic behavior of densities. Stat. Decis. 5, 105–138 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Greenwood, P.E., Shiryayev, A.N.: Contiguity and the Statistical Invariance Principle. Gordon and Breach, New York (1985)

    MATH  Google Scholar 

  3. Gushchin, A.A.: On taking limits under the compensator sign. In: Ibragimov, I.A., Zaitsev, A.Yu. (eds.) Probability Theory and Mathematical Statistics (St. Petersburg 1993), pp. 185–192. Gordon and Breach, Amsterdam (1996)

    Google Scholar 

  4. Gushchin, A.A., Küchler, U.: Asymptotic inference for a linear stochastic differential equation with time delay. Bernoulli 5, 1059–1098 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gushchin, A.A., Valkeila, E.: Exponential approximation of statistical experiments. In: Balakrishnan, N., et al. (eds.) Asymptotic Methods in Probability and Statistics with Applications (St. Petersburg 1998), pp. 409–423. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  6. Gushchin, A.A., Valkeila, E.: Approximations and limit theorems for likelihood ratio processes in the binary case. Stat. Decis. 21, 219–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hallin, M., Van Den Akker, R., Werker, B.J.: On quadratic expansions of log-likelihoods and a general asymptotic linearity result. In: Hallin, M., et al. (eds.) Mathematical Statistics and Limit Theorems, pp. 147–165. Springer, Cham (2015)

    Google Scholar 

  8. Höpfner, R.: Asymptotic inference for continuous-time Markov chains. Probab. Theory Relat. Fields 77, 537–550 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Höpfner, R.: On statistics of Markov step processes: representation of log-likelihood ratio processes in filtered local models. Probab. Theory Relat. Fields 94, 375–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Höpfner, R.: Asymptotic Statistics. Walter de Gruyter, Berlin (2014)

    Book  MATH  Google Scholar 

  11. Höpfner, R., Jacod, J.: Some remarks on the joint estimation of the index and the scale parameter for stable processes. In: Mandl, P., Hušková, M. (eds.) Asymptotic Statistics: Proceedings of the 5th Prague Symposium 1993, pp. 273–284. Physica Verlag, Heidelberg (1994)

    Google Scholar 

  12. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)

    MATH  Google Scholar 

  13. Jacod, J.: Filtered statistical models and Hellinger processes. Stoch. Process. Appl. 32, 3–45 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacod, J.: Convergence of filtered statistical models and Hellinger processes. Stoch. Process. Appl. 32, 47–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacod, J.: Une application de la topologie d’Emery: le processus information d’un modèle statistique filtré. Séminaire de Probabilités XXIII. Lecture Notes in Mathematics, vol. 1372, pp. 448–474. Springer, Berlin (1989)

    Chapter  Google Scholar 

  16. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Janssen, A.: Limits of translation invariant experiments. J. Multivar. Anal. 20, 129–142 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Janssen, A.: Asymptotically linear and mixed normal sequences of statistical experiments. Sankhya: Ser. A 53, 1–26 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Janssen, A.: Asymptotic relative efficiency of tests at the boundary of regular statistical models. J. Stat. Plan. Inference 126, 461–477 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  21. Kutoyants, Yu.: Identification of Dynamical Systems with Small Noise. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  22. Le Cam, L.: Locally asymptotically normal families of distributions. Univ. Calif. Publ. Stat. 3, 37–98 (1960)

    Google Scholar 

  23. Le Cam, L.: Likelihood functions for large numbers of independent observations. In: David, F.N. (ed.) Research Papers in Statistics (Festschrift J. Neyman), pp. 167–187. Wiley, London (1966)

    Google Scholar 

  24. Le Cam, L.: Sur l’approximation de familles de mesures par des familles gaussiennes. Annales de l’I.H.P. Probabilités et statistiques 21, 225–287 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Springer, New York (1986)

    Book  MATH  Google Scholar 

  26. Le Cam, L., Yang, G.L.: On the preservation of local asymptotic normality under information loss. Ann. Stat. 16, 483–520 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le Cam, L., Yang, G.L.: Asymptotics in Statistics: Some Basic Concepts, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  28. Lin’kov, Yu.N.: Asymptotic Statistical Methods for Stochastic Processes. Translations of Mathematical Monographs, vol. 196. American Mathematical Society, Providence (2001) Russian original: Kiev, Naukova Dumka (1993)

    Google Scholar 

  29. Liptser, R.Sh, Shiryayev, A.N.: Theory of Martingales. Kluwer, Dordrecht (1989)

    Google Scholar 

  30. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. I. General Theory, 2nd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  31. Luschgy, H.: Local asymptotic mixed normality for semimartingale experiments. Probab. Theory Relat. Fields 92, 151–176 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luschgy, H.: Asymptotic inference for semimartingale models with singular parameter points. J. Stat. Plan. Inference 39, 155–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luschgy, H.: Local asymptotic quadraticity of stochastic process models based on stopping times. Stoch. Process. Appl. 57, 305–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pfanzagl, J.: On distinguished LAN-representations. Math. Methods Stat. 11, 477–488 (2002)

    MathSciNet  Google Scholar 

  35. Shiryaev, A.N., Spokoiny, V.G.: Statistical Experiments and Decisions: Asymptotic Theory. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  36. Strasser, H.: Scale invariance of statistical experiments. Probab. Math. Stat. 5, 1–20 (1985)

    MathSciNet  MATH  Google Scholar 

  37. Strasser, H.: Stability of filtered experiments. In: Sendler, W. (ed.) Contributions to Stochastics, pp. 202–213. Physica Verlag, Heidelberg (1987)

    Chapter  Google Scholar 

  38. Vostrikova, L.: Functional limit theorems for the likelihood ratio processes. Ann. Univ. Sci. Budapest. Sect. Comput. 6, 145–182 (1985)

    MathSciNet  MATH  Google Scholar 

  39. Vostrikova, L.: On the weak convergence of likelihood ratio processes of general statistical parametric models. Stochastics 23, 277–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Suomalainen Tiedeakatemia (A.A. Gushchin), by Academy of Finland grants 210465 and 212875 (E. Valkeila), and by the program Tête-à-tête in Russia (Euler International Mathematical Institute; both authors). For the first author, this work has been funded by the Russian Academic Excellence Project ‘5-100’. The first author is deeply grateful to the referees for a number of comments aimed at improving the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gushchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gushchin, A., Valkeila, E. (2017). Quadratic Approximation for Log-Likelihood Ratio Processes. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics. MPSAS 2016. Springer Proceedings in Mathematics & Statistics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65313-6_8

Download citation

Publish with us

Policies and ethics