Skip to main content

Immersion and Invariance Adaptive Backstepping Spacecraft Attitude Control with Modified Rodrigues Parameters

  • Conference paper
  • First Online:
Advances in Aerospace Guidance, Navigation and Control
  • 2370 Accesses

Abstract

An adaptive Backstepping attitude control law based on Immersion and Invariance (I&I) is developed for the TU Delft FAST-D micro-satellite. Tackling both system uncertainties and disturbances, a general additively disturbed rotational dynamics model is considered. In the I&I framework the parameters to be estimated are typically constant. Here, however, a family of I&I-Backstepping controllers is shown to be input-to-state stable for a class of strict-feedback systems with time-varying uncertainties. This novel result allows the design of an I&I attitude controller for the spacecraft model considered. The developed control law shows superior performance with respect to Standard (non-adaptive) and Tuning Functions adaptive Backstepping controllers under nominal and heavily perturbed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The rotation represented by \(\varvec{\sigma } _\mathrm {a} \otimes \varvec{\sigma } _\mathrm {b} \) is equivalent to that given by left DCM multiplication \({\mathbf {C}}\left( \varvec{\sigma } _\mathrm {a} \right) {\mathbf {C}}\left( \varvec{\sigma } _\mathrm {b} \right) \).

References

  1. Astolfi A, Ortega R (2001) Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. In: IFAC symposium on nonlinear control system design

    Google Scholar 

  2. Atassi AN, Khalil HK (1999) A separation principle for the stabilizationof a class of nonlinear systems. IEEE Trans Autom Control 44(9):1672–1687

    Article  MATH  Google Scholar 

  3. Farrell JA, Polycarpou M, Sharma M (2003) Adaptive backstepping with magnitude, rate, and bandwidth constraints: aircraft longitude control. In: Proceedings of the annual American control conference

    Google Scholar 

  4. Farrell JA et al (2009) Command filtered backstepping. IEEE Trans Autom Control 54:1391–1395

    Article  MathSciNet  MATH  Google Scholar 

  5. Gill E et al (2010) Atmospheric aerosol characterization with the Dutch-Chinese fast formation flying mission. Acta Astronautica 66:1044–1051

    Article  Google Scholar 

  6. Guo J et al (2009) Status of the FAST mission: micro-satellite formation flying for technology, science and education. In: 60th international astronautical congress

    Google Scholar 

  7. Juang J (2004) Instrument attitude precision control. Technical report. Langley Research Center, NASA, Virginia

    Google Scholar 

  8. Junkins JL, Singla P (2004) How nonlinear is it? a tutorial on nonlinearity of orbit and attitude dynamics. J Astronaut Sci 52:7–60

    MathSciNet  Google Scholar 

  9. Kanellakopoulos I, Kokotović P, Morse AS (1991) Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans Autom Control 36(11):1241–1253

    Article  MathSciNet  MATH  Google Scholar 

  10. Karagiannis D, Astolfi A (2005) Nonlinear observer design using invariant manifolds and applications. In: 44th IEEE conference on decision and control

    Google Scholar 

  11. Karagiannis D, Astolfi A (2008) Nonlinear adaptive control of systems in feedback form: an alternative to adaptive backstepping. Syst Control Lett 57:733–739

    Article  MathSciNet  MATH  Google Scholar 

  12. Karagiannis D, Carnevale D, Astolfi A (2008) Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans Autom Control 53(11):2602–2614

    Article  MathSciNet  MATH  Google Scholar 

  13. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  14. Kokotović P, Arcak M (2001) Constructive nonlinear control: a historical perspective. Autimatica 37:637–662

    Article  MathSciNet  MATH  Google Scholar 

  15. Krstić M, Kanellakopoulos I, Kokotović V (1995) Nonlinear and adaptive control design. Wiley-Interscience, New Jersey

    MATH  Google Scholar 

  16. Li C, Ma G (2007) Adaptive backstepping control for attitude tracking of a spacecraft. In: IEEE international symposium on industrial electronics

    Google Scholar 

  17. Maessen D et al (2009) Mission design of the Dutch-Chinese FAST micro-satellite mission. In: 7th IAA symposium on small satellites for earth observation

    Google Scholar 

  18. Pomet J, Praly L (1992) Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans Autom Control 37:729–740

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson B, Stoneking E (2003) Satellite GN&C anomaly trends. In: 26th annual AAS guidance and control conference

    Google Scholar 

  20. Schaub H, Junkins JL (1996) Stereographic orientation parameters for attitude dynamics: a generalization of the Rodrigues parameters. J Astronaut Sci 44:1–19

    MathSciNet  Google Scholar 

  21. Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517

    MathSciNet  Google Scholar 

  22. Sonneveldt L et al (2010) Immersion and invariance based nonlinear adaptive flight control. In: AIAA guidance, navigation and control conference and exhibit

    Google Scholar 

  23. Trigo GF (2011) Robust and adaptive nonlinear attitude control of a spacecraft: a comparison of backstepping-based designs. MA thesis. Delft University of Technology

    Google Scholar 

  24. Tsiotras P (1994) New control laws for the attitude stabilization of rigid bodies. In: IFAC symposium on automatic control in aerospace

    Google Scholar 

  25. van Oort ER et al (2010) Full envelope modular adaptive control of a fighter aircraft using orthogonal least-squares. J Guid Navig Dyn 33(5):1461–1472

    Article  Google Scholar 

  26. Wie B (2008) In: Schetz JA (ed) Space vehicle dynamics and control, 2nd edn. AIAA

    Google Scholar 

  27. Wiesel WE (1997) Spaceflight dynamics, 2nd edn. Irwin/McGraw-Hill

    Google Scholar 

  28. Yip PP, Hedrick JK (1998) Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Inter J Control 71:959–979

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme F. Trigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trigo, G.F., Chu, QP. (2018). Immersion and Invariance Adaptive Backstepping Spacecraft Attitude Control with Modified Rodrigues Parameters. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics