Skip to main content

Maximum Null Motion Algorithm for Single Gimbal Control Moment Gyroscopes

  • Conference paper
  • First Online:
Advances in Aerospace Guidance, Navigation and Control

Abstract

A new maximum null motion algorithm is presented for single gimbal control moment gyroscopes. This algorithm limits the amount of null motion to the gimbal rate limit and switches direction of the null motion if the limit is reached. Numerical simulations show that using the complete equations of motion, gimbal dynamics, gimbal rate limit, and including system and sensor noise, the maximum null motion algorithm is better in generating a constant torque command than the traditional nondirectional null motion algorithm. This is especially relevant for spacecraft during station keeping tasks under a constant disturbance torque.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedrossian NS, Paradiso J, Stark C, Rowell D (1990) Steering law design for redundant single-gimbal control moment gyroscopes. J Guid Control Dyn 13(6):1083–1089

    Article  Google Scholar 

  2. Chubb W, Seltzer S (1971) Skylab attitude and pointing control system. NASA TN D-6068 (February). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710007043.pdf

  3. Clark C, Worrall K, Yavuzoglu E (2010) A control moment gyro for dynamic attitude control of small satellites conference on small satellites. In: AIAA/USU conference on small satellites. http://digitalcommons.usu.edu/smallsat/2010/all2010/68/

  4. Crassidis JL, Markley FL, Cheng Y (2007) Survey of nonlinear attitude estimation methods. J Guid Control Dyn 30(1):12–28. https://doi.org/10.2514/1.22452

  5. Ford KA, Hall CD (2000) Singular direction avoidance steering for control-moment gyros. J Guid Control Dyn 23(4):648–656. https://doi.org/10.2514/2.4610

  6. Kurokawa H (1998) A geometric study of single gimbal control moment gyros. Technical report 175, Report of Mechanical Engineering

    Google Scholar 

  7. Kurokawa H (2007) Survey of theory and steering laws of single-gimbal control moment gyros. J Guid Control Dyn 30(5):1331–1340. https://doi.org/10.2514/1.27316

  8. Lefferts EJ, Markley EL, Shuster MD (1982) A I AA-8 2-0070 Estimation. In: AIAA 20th aerospace sciences meeting

    Google Scholar 

  9. Markley FL, Crassidis JL (2014) Fundamentals of spacecraft attitude determination and control. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Nakamura Y, Hanafusa H (1986) Inverse kinematic solutions with singularity robustness for robot manipulator control. J Dyn Syst Meas Control 108(3):163–171. http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403812

  11. Oh H, Vadali S (1989) Feedback control and steering laws for spacecraft using single gimbal control moment gyros

    Google Scholar 

  12. Roser X, Sghedoni M (1997) Control Moment Gyroscopes (CMG’S) and their application in future scientific missions. In: Proceedings third international conference on spacecraft guidance, navigation and control systems, pp 523–528

    Google Scholar 

  13. Ross CH, Worley E (1971) Optimized Momentum and Attitude Control System (MACS) for skylab. In: AIAA guidance, control and flight mechanics conference, vol 71-938

    Google Scholar 

  14. Trawny N, Roumeliotis SI (2005) Indirect Kalman filter for 3D attitude estimation, Department of Computer Science & Engineering (2005-002), pp 1–25. https://doi.org/10.2514/6.2005-6052. http://www-users.cs.umn.edu/~trawny/Publications/Quaternions_3D.pdf

  15. Wie B (2005) Singularity escape/avoidance steering logic for control moment gyro systems. J Guid Control Dyn 28(5): 948–956. https://doi.org/10.2514/1.10136

  16. Wie B (2008) Space vehicle dynamics and control. In: AIAA educational series

    Google Scholar 

  17. Wie B, Byun KW, Warren VW (1988) A new momentum management controller for the space station. Technical report. https://doi.org/10.2514/6.1988-4132

  18. Wie B, Bailey D, Heiberg C (2001) Singularity robust steering logic for redundant single-gimbal control moment gyros. J Guid Control Dyn 24(5):865–872. https://doi.org/10.2514/2.4799

  19. Wie B, Bailey D, Heiberg C (2002) Rapid multitarget acquisition and pointing control of agile spacecraft. J Guid Control Dyn 25(1):96–104. https://doi.org/10.2514/2.4854

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. V. Schallig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schallig, S.A.V., Chu, Q.P., Rhee, S.W., van Kampen, E. (2018). Maximum Null Motion Algorithm for Single Gimbal Control Moment Gyroscopes. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics