Skip to main content

Multi Sensor Fusion Based on Adaptive Kalman Filtering

  • Conference paper
  • First Online:

Abstract

The optimal performance of the conventional Kalman filters is not guaranteed, when there is uncertainty in the process and measurement noise covariances. In this paper, in order to reduce the effect of noise covariance uncertainty, the Fuzzy Adaptive Iterated Extended Kalman Filter (FAIEKF) and Fuzzy Adaptive Unscented Kalman Filter (FAUKF) are proposed to overcome this drawback. The proposed FAIEKF and FAUKF have been applied to fuse signals from Global Positioning System (GPS) and Inertial Navigation Systems (INS) for the autonomous vehicles’ navigation. In order to validate the accuracy and convergence of the proposed approaches, results obtained by FAUKF and FAIEKF were compared to the Fuzzy Adaptive Extended Kalman Filter (FAEKF), Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Iterated Extended Kalman Filter (IEKF). The simulation results illustrate the superior performance of the AKUKF compared to the other filters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhao H, Wang Z (2012) Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion. IEEE Sens J 12(5):943–953

    Article  Google Scholar 

  2. Rigatos G, Tzafestas S (2007) Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math Comput Model Dyn Syst 13:251–266

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlson NA (1994) Federated Kalman filter simulation results. J Inst Navig 41:297–321

    Article  Google Scholar 

  4. Escamilla-Ambrosio PJ, Mort N (2002) Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment. Presented in the fifth international conference on information fusion 2:1542–1549

    Article  Google Scholar 

  5. Jetto L, Longhi S, Venturini G (1999) Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots. IEEE Trans Robot Autom 15(2):219–229

    Article  Google Scholar 

  6. Kim KH, Lee JG, Park CG (2009) Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system. IEEE Trans Aerosp Electron Syst 45(1):125–37

    Article  Google Scholar 

  7. Stubberud SC, Lobbia RN, Owen M (1995) An adaptive extended Kalman filter using artificial neural networks. In: Presented in the 34th IEEE conference on decision and control, vol 2, pp 1852–1856

    Google Scholar 

  8. Shi Y, Han C, Liang Y (2009) Adaptive UKF for target tracking with unknown process noise statistics. In: Presented in 12th International conference on information fusion, FUSION’09, pp 1815–1820

    Google Scholar 

  9. Soken HE, Hajiyev C (2011) Adaptive fading UKF with Q-adaptation: application to picosatellite attitude estimation. J Aerosp Eng 26(3):628–36

    Article  Google Scholar 

  10. Jwo DJ, Yang CF, Chuang CH, Lee TY (2013) Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn 73(1–2):377–95

    Article  MathSciNet  Google Scholar 

  11. Sasiadek JZ, Wang Q, Zeremba MB (2000) Fuzzy adaptive Kalman filtering for INS/GPS data fusion. In: Proceedings of the IEEE international symposium intelligent control, pp 181–186

    Google Scholar 

  12. Sasiadek JZ (2002) Sensor fusion. Annu Rev. Control 26(2):203–28

    Google Scholar 

  13. Sasiadek JZ, Wang Q (2003) Low cost automation using INS/GPS data fusion for accurate positioning. Robotica 21(03):255–60

    Article  Google Scholar 

  14. Sasiadek JZ, Hartana P (2004) Sensor fusion for navigation of an autonomous unmanned aerial vehicle. Presented in IEEE international conference on robotics and automation ICRA 4:4029–4034

    Google Scholar 

  15. Wan EA, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Presented in systems for signal processing, communications, and control symposium. AS-SPCC, pp 153-158

    Google Scholar 

  16. Wan EA, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Presented in adaptive systems for signal processing, communications, and control symposium. AS-SPCC, pp 153–158

    Google Scholar 

  17. Yazdkhasti S, Sasiadek JZ, Ulrich S (2016) Performance enhancement for GPS/INS fusion by using a fuzzy adaptive unscented Kalman filter. In: Presented in 21st international conference methods and models in automation and robotics (MMAR), pp 1194–1199

    Google Scholar 

  18. Yazdkhasti S, Sasiadek JZ (2017) Sensor fusion using fuzzy adaptivr uncented Kalman filter for uncertain systems. In: Accepted in 11th annual IEEE international system conference. Montreal, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setareh Yazdkhasti .

Editor information

Editors and Affiliations

Appendices

Appendix

GPS Satellite Geometry

Four pseudo range measurements are used as a measurement model of the Kalman filter.

$$ h_{1}=\sqrt{(X_{1}-x)^{2}+(Y_{1}-y)^{2}+(Z_{1}-z)^{2}}+C\varDelta t_{1} $$
$$ h_{2}=\sqrt{(X_{2}-x)^{2}+(Y_{2}-y)^{2}+(Z_{2}-z)^{2}}+C\varDelta t_{2} $$
$$ h_{3}=\sqrt{(X_{3}-x)^{2}+(Y_{3}-y)^{2}+(Z_{3}-z)^{2}}+C\varDelta t_{3} $$
$$\begin{aligned} \quad h_{4}=\sqrt{(X_{4}-x)^{2}+(Y_{4}-y)^{2}+(Z_{4}-z)^{2}}+C\varDelta t_{4} \end{aligned}$$
(31)

where, \((X_{1},Y_{1},Z_{1})\), \((X_{2},Y_{2},Z_{2})\), \((X_{3},Y_{3},Z_{3})\), \((X_{4},Y_{4},Z_{4})\) are the positions of the four GPS satellites respectively, and (xyz) are the position of the vehicle. The GPS satellite assumed to be in circular orbits.

$$\begin{aligned} X_{j}=R[cos \theta _{j} cos \varOmega _{i}-sin\theta _{j} sin\varOmega _{j} cos55^{\circ }] \end{aligned}$$
(32)
$$\begin{aligned} Y_{j}=R[cos \theta _{j} sin \varOmega _{j}+sin\theta _{j} sin\varOmega _{j} cos55^{\circ }] \end{aligned}$$
(33)
$$\begin{aligned} Z_{j}=R[sin \theta _{j} sin55^{\circ }] \end{aligned}$$
(34)

where

$$ \theta _{j}= \theta _{0}+T \dfrac{360}{43082}\,{\mathrm {deg}} \quad j=1,\ldots ,4 $$
$$ \varOmega _{j}=\varOmega _{0}-T \dfrac{360}{86164}\,{\mathrm {deg}} $$
$$\begin{aligned} R=26560000\,{\mathrm m} \end{aligned}$$
(35)
$$\begin{aligned} \mathbf P _{0}=\begin{bmatrix} 100&0&0&0&0&0&0&0 \\0&10&0&0&0&0&0&0\\0&0&100&0&0&0&0&0\\ 0&0&0&10&0&0&0&0\\ 0&0&0&0&100&0&0&0\\ 0&0&0&0&0&10&0&0\\ 0&0&0&0&0&0&100&0\\ 0&0&0&0&0&0&0&10\end{bmatrix} \end{aligned}$$
(36)
$$\begin{aligned} \mathbf Q = \begin{bmatrix} {{\sigma } }_{{{ x}}}^{{2}}{t}^{{3}}/{3 }&\sigma _{x}^{2}t^{2}/2&0&0&0&0&0&0 \\ {\sigma } _{x}^{2}{t}^{2}/2&{\sigma } _{x}^{2}t^{2}&0&0&0&0&0&0 \\ 0&0&{\sigma }_{{y}}^{2}t^{3}/3&\sigma _{y}^{2}t^{2}/2&0&0&0&0 \\ 0&0&{\sigma } _{y}^{2}t^{2}/2&{\sigma } _{y}^{2}t^{2}&0&0&0&0&\\ 0&0&0&0&{\sigma } _{z}^{2}t^{3}/3&{\sigma } _{z}^{2}t^{2}/2&0&0 \\ 0&0&0&0&{\sigma } _{z}^{2}t^{2}/2&{\sigma } _{z}^{2}t^{2}&0&{2}/{3}\\ 0&0&0&0&0&0&({S}_{a}t+\frac{{S}_{b}t^{3}}{3})c^{2}&\frac{S_{b}t^{2}c^{2}}{2} \\ 0&0&0&0&0&0&\frac{{S}_{b}t^{3}c^{2}}{2}&{S_{b}} \end{bmatrix} \end{aligned}$$
(37)

where, \(\sigma _{x}\), \(\sigma _{y}\), and \(\sigma _{z}\) represent standard deviations associated with x, y, and z, respectively. t is the sample time, c is the speed of light \(S_{a}=0.4(10)^{-18}\), standard deviation of clock offset, and \(S_{b}=1.58(10)^{-18}\), is the standard derivation associated with velocity (Table 5).

Table 5 Satellite parameters

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yazdkhasti, S., Sasiadek, J.Z. (2018). Multi Sensor Fusion Based on Adaptive Kalman Filtering. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics