Skip to main content

Filament-Initiated Lasing in Neutral Molecular Nitrogen

  • Chapter
  • First Online:
Air Lasing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 208))

  • 872 Accesses

Abstract

Modern optical spectroscopy of the atmosphere at high altitudes relies primarily on the powerful and well-established LIDAR technique. A ground-based (or air−/space-borne) laser source is used for standoff linear measurements of the scattering characteristics of molecular, atomic, or particle species in the air in different scattering regimes (Rayleigh, Mie, spontaneous Raman). The incoherent nature of the scattered field measured in the backward direction sets practical limitation on the tracing distance, spatial resolution, and the species-dependent sensitivity threshold. The possibility of standoff initiation of a coherent source of backward-directed radiation in the sky would enable application of different methods of nonlinear optics, such as stimulated Raman scattering, CARS, etc., for the highly sensitive and highly selective spectroscopy of the atmosphere at high altitudes (Hemmer et al. PNAS 108, 3130, 2011; Yuan et al. Laser Phys. Lett. 8, 736, 2011) with (potentially) significantly larger detection range and finer spatial resolution. One of the possibilities to initiate such standoff coherent source of radiation in the atmosphere can be provided by achieving population inversion and laser generation in one of the two main atmospheric constituents, nitrogen (≈78% concentration) and oxygen (≈21% concentration). In principle, both gases allow population inversion and laser generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, Standoff spectroscopy via remote generation of a backward-propagating laser beam. PNAS 108, 3130 (2011)

    Article  ADS  Google Scholar 

  2. L. Yuan, A.A. Lanin, P.K. Jha, A.J. Traverso, D.V. Voronine, K.E. Dorfman, A.B. Fedotov, G.R. Welch, A.V. Sokolov, A.M. Zheltikov, M.O. Scully, Coherent Raman Umklappscattering. Laser Phys. Lett. 8, 736 (2011)

    Article  ADS  Google Scholar 

  3. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  4. S.L. Chin, Femtosecond Laser Filamentation, Springer Series on Atomic, Optical and Plasma Physics 55 (Springer Science+Business Media, LLC, New York, 2010)

    Book  Google Scholar 

  5. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, J. Dubois, Kilometer range filamentation. Opt. Express 21, 26836 (2013)

    Article  ADS  Google Scholar 

  6. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  7. H.G. Heard, Ultra-violet gas laser at room temperature. Nature 200, 667 (1963)

    Article  ADS  Google Scholar 

  8. J. Stebbins, A.E. Whitford, P. Swings, A strong infrared radiation from molecular nitrogen in the night sky. Astrophys. J. 101, 39 (1945)

    Article  ADS  Google Scholar 

  9. R.W. Dreyfus, R.T. Hodgson, Electron beam excitation of the nitrogen laser. Appl. Phys. Lett. 20, 195 (1972)

    Article  ADS  Google Scholar 

  10. N.G. Basov, A.N. Brunin, V.A. Danilychev, V.A. Dolgikh, O.M. Kerimov, A.N. Lobanov, S.I. Sagitov, A.F. Suchkov, High-pressure ultraviolet laser utilizing Ar+N2 mixture. Sov. J. Quant. Electron. 5, 1218 (1976)

    Article  ADS  Google Scholar 

  11. R.S. Kunabenchi, M.R. Gorbal, M.I. Savadatt, Nitrogen lasers. Progr. Quant. Electr. 9, 259 (1984)

    Article  ADS  Google Scholar 

  12. V.A. Vaulin, V.N. Slinko, S.S. Sulakshin, Air ultraviolet laser excited by high-power microwave pulses. Sov. Journ. Quant. Electr. 18, 1457 (1988)

    Article  ADS  Google Scholar 

  13. M. Alden, U. Westblom, J.E.M. Goldsmith, Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases. Opt. Lett. 14, 305 (1989)

    Article  ADS  Google Scholar 

  14. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-gain backward lasing in air. Science 331, 442 (2011)

    Article  ADS  Google Scholar 

  15. A. Laurain, M. Scheller, P. Polynkin, Low-threshold bidirectional air lasing. Phys. Rev. Lett. 113, 253901 (2014)

    Article  ADS  Google Scholar 

  16. A. Dogariu, R.B. Miles, in Frontiers in Optics 2013/Laser Science XXIX, (Laser Science, Orlando, 2013)

    Google Scholar 

  17. Q. Luo, W. Liu, S.L. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B Lasers Opt. 76, 337 (2003)

    Article  ADS  Google Scholar 

  18. J.H. Marburger, Self-focusing: theory. Prog. Quantum Electr. 4, 35 (1975)

    Article  ADS  Google Scholar 

  19. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012)

    Article  ADS  Google Scholar 

  20. W.R. Bennett, W.L. Faust, R.A. McFarlane, C.K.N. Patel, Dissociative excitation transfer and optical maser oscillation in Ne-O2 and Ar-O2 rf discharges. Phys. Rev. Lett. 8, 470 (1962); W.R. Bennett Jr., Optical spectra excited in high pressure noble gases by alpha impact. Ann. of Phys. 18, 367 (1962)

    Google Scholar 

  21. G. Andriukaitis, D. Kartashov, D. Lorenc, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, J. Limpert, T. Clausnitzer, E.-B. Kley, A. Voronin, A. Zheltikov, Hollow-fiber compression of 6 mJ pulses from a continuous-wave diode-pumped single-stage Yb; Na:CaF2 chirped pulse amplifier. Opt. Lett. 36, 1914 (2011)

    Article  ADS  Google Scholar 

  22. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, H.C. Kapteyn, 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2775 (2011)

    ADS  Google Scholar 

  23. S.V. Pancheshnyi, S.M. Starikovskaia, A.Yu. Starikovskii, Measurements of rate constants of the N2(C3Πu υ´=0) and N2 +(B2Σu + υ´=0) deactivation by N2, O2, H2, CO and H2O molecules in afterglow of the nanosecond discharge. Chem. Phys. Lett. 294, 523 (1998)

    Google Scholar 

  24. D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen. Phys. Rev. A 88, 041805(R) (2013)

    Article  ADS  Google Scholar 

  25. https://jlf.llnl.gov.

  26. J. Kasparian, J.-P. Wolf, Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466 (2008)

    Article  ADS  Google Scholar 

  27. D. Kartashov, Nitrogen laser from a filament Symposium. Femtosecond Filamentation and Standoff Laser Sensing, Vienna, 28–29 March 2012

    Google Scholar 

  28. D. Kartashov, S. Ališauskas, A. Pugžlys, M.N. Shneider, A. Baltuška, Theory of a filament initiated nitrogen laser. J. Phys. B 48, 094016 (2015)

    Article  ADS  Google Scholar 

  29. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, A. Baltuška, Mid-infrared laser filamentation in molecular gases. Opt. Lett. 38, 3194 (2013)

    Article  ADS  Google Scholar 

  30. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Opt. Express 22, 12750 (2014)

    Article  ADS  Google Scholar 

  31. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz, Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses. Phys. Rev. Lett. 114, 063003 (2015)

    Article  ADS  Google Scholar 

  32. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, Y. Liu, Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK). Opt. Express 22, 29964 (2014)

    Article  ADS  Google Scholar 

  33. J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, Z. Xu, Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses. Opt. Express 16, 19005 (2014)

    Article  ADS  Google Scholar 

  34. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, B. Landgraf, A. Hoffmann, P. Polynkin, C. Spielmann, A. Baltuska, Filament initiated standoff nitrogen laser: theory and experiment. Book of Abstracts COFIL2014, Shanghai, 2014

    Google Scholar 

  35. H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360, 171 (2009)

    Article  ADS  Google Scholar 

  36. I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Kinetic scheme of the nonequlibrium discharge in nitrogen oxygen mixtures. Plasm. Sour. Science Tech. 1, 207 (1992)

    Article  ADS  Google Scholar 

  37. J. Henriques, E. Tatarova, V. Guerra, C.M. Ferreira, Wave driven N2–Ar discharge. I. Self-consistent theoretical model. J. Appl. Phys. 91, 5622 (2002)

    Article  ADS  Google Scholar 

  38. M. Moravej, X. Yang, M. Barankin, J. Penelon, S.E. Babayan, R.F. Hicks, Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Sci. Tech. 15, 204 (2006)

    Article  ADS  Google Scholar 

  39. K.S. Klopovsky, A.V. Mukhovatova, A.M. Popov, N.A. Popov, O.B. Popovicheva, T.V. Rakhimova, Kinetics of metastable states in high-pressure nitrogen plasma pumped by high-current electron beam. Journ. Phys. D 27, 1399 (1994)

    Article  ADS  Google Scholar 

  40. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Zh. Eksp. Teor. Fiz. 47, 1945 (1964); Sov. Phys. JETP 20, 1307 (1965)

    Google Scholar 

  41. A.M. Perelomov, V.S. Popov, and M.V. Terent’ev, Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924 (1966); Zh. Eksp. Teor. Fiz. 50, 1393 (1966)

    Google Scholar 

  42. V.D. Mur, S.V. Popruzhenko, V.S. Popov, Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (the case of elliptic polarization). JETP 92, 777 (2001)

    Article  ADS  Google Scholar 

  43. P.B. Corkum, N.H. Burnett, F. Brunel, Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989)

    Article  ADS  Google Scholar 

  44. Y. Itikawa, Cross sections for electron collisions with nitrogen molecules. Journ. Phys. Chem. Ref. Data 35, 31 (2006)

    Article  ADS  Google Scholar 

  45. S. Bodrov, V. Bukin, M. Tsarev, A. Murzanev, S. Garnov, N. Aleksandrov, A. Stepanov, Plasma filament investigation by transverse optical interferometry and terahertz scattering. Opt. Express 19, 6829 (2011)

    Article  ADS  Google Scholar 

  46. N.L. Aleksandrov, S.B. Bodrov, M.V. Tsarev, A.A. Murzanev, Y.A. Sergeev, Y.A. Malkov, A.N. Stepanov, Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and sub-atmospheric pressures. Phys. Rev. E 94, 013204 (2016)

    Article  ADS  Google Scholar 

  47. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Remotely induced atmospheric lasing. Appl. Phys. Lett. 98, 211102 (2011)

    Article  ADS  Google Scholar 

  48. J. Penãno, P. Sprangle, B. Hafizi, D. Gordon, R. Femsler, M. Scully, Remote lasing in air by recombination and electron impact excitation of molecular nitrogen. J. Appl. Phys. 111, 033105 (2012)

    Article  ADS  Google Scholar 

  49. Y.P. Raizer, Gas Discharge Physics (Springer, New York, 1991)

    Book  Google Scholar 

  50. E.T. Gerry, Pulsed-molecular-nitrogen laser theory. Appl. Phys. Lett. 7, 6 (1965)

    Article  ADS  Google Scholar 

  51. L. Piper, State to state N2(A3Σu +) energy pooling reactions. I. The formation of N2(C3Πu) and the Herman infrared system. Journ. Chem. Phys. 88, 231 (1988); State to state N2(A3Σu +) energy pooling reactions. II. The formation and quenching of N2(B3Πg, v’=1–12). Journ. Chem. Phys. 88, 6911 (1988)

    Google Scholar 

  52. R.T. Brown, D.C. Smith, Optically pumped electric discharge UV laser. Appl. Phys. Lett. 24, 236 (1974)

    Article  ADS  Google Scholar 

  53. M. Scheller, N. Born, W. Cheng, P. Polynkin, Channeling the electrical breakdown of air by optically heated plasma filaments. Optica 1, 125 (2014)

    Article  Google Scholar 

  54. J. Papeer, M. Botton, D. Gordon, P. Sprangle, A. Zigler, Z. Henis, Extended lifetime of high density plasma filament generated by a dual femtosecond–nanosecond laser pulse in air. New J. Phys. 16, 123046 (2014)

    Article  ADS  Google Scholar 

  55. D. Kartashov, M.N. Shneider, Femtosecond filament initiated, microwave heated standoff nitrogen laser. Journal of Appl. Phys. 121, 113303 (2017)

    Google Scholar 

  56. M.N. Shneider, A. Baltuska, A.M. Zheltikov, Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization. J. Appl. Phys. 110, 083112 (2011)

    Article  ADS  Google Scholar 

  57. F. Théberge, W. Liu, P.T. Simard, A. Becker, S.L. Chin, Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Phys. Rev. E 74, 036406 (2006)

    Article  ADS  Google Scholar 

  58. A.W. Ali, A.C. Kolb, A.D. Anderson, Theory of the pulsed molecular nitrogen laser. Appl. Opt. 6, 2115 (1967)

    Article  ADS  Google Scholar 

  59. V.F. Papakin, A.Y. Sonin, Measurement of the gain of an ultraviolet nitrogen laser. Sov. J. Quant. Electron. 15, 581 (1985)

    Article  ADS  Google Scholar 

  60. V.N. Shlyaptsev, P.V. Nickles, T. Schlegel, M.P. Kalachnikov, A.L. Osterheld, Tabletop x-ray laser pumped with subnanosecond and picosecond pulses. Proc. SPIE 2012, 111 (1993)

    Article  ADS  Google Scholar 

  61. P.N. Malevich, D. Kartashov, Z. Pu, S. Ališauskas, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, A.A. Lanin, A.M. Zheltikov, M. Marangoni, G. Cerullo, Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases. Opt. Express 20, 18784 (2012)

    Article  ADS  Google Scholar 

  62. P. Panagiotopoulos, P. Whalen, M. Kolesik, J.V. Moloney, Super high power mid-infrared femtosecond light bullet. Nature Phot. 9, 543 (2015)

    Article  ADS  Google Scholar 

  63. G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, A. Mysyrowicz, Superfilamentation in air. Phys. Rev. Lett. 112, 223902 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Kartashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kartashov, D., Shneider, M.N., Baltuska, A. (2018). Filament-Initiated Lasing in Neutral Molecular Nitrogen. In: Polynkin, P., Cheng, Y. (eds) Air Lasing. Springer Series in Optical Sciences, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65220-7_5

Download citation

Publish with us

Policies and ethics