Skip to main content

The Role of Electron Collisions in Lasing in Neutral and Singly Ionized Molecular Nitrogen

  • Chapter
  • First Online:
  • 1197 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 208))

Abstract

In this chapter, we will discuss lasing actions in the air that follow the excitation with a short intense laser pulse at 800 nm. We will successively analyze two types of laser actions. The first type is based on the optical transition between the excited triplet states of the neutral nitrogen molecule. Based on the study of the dependence of the lasing signal on the polarization ellipticity of the pump pulse, we unambiguously attribute gain mechanism in this scheme to the electron collisions with neutral nitrogen molecules that result in population inversion. Experimental results on the dynamics of emissions in the forward and backward directions with respect to the direction of the pump pulse are confirmed by numerical simulations based on the Maxwell-Bloch equations. The second type of lasing stems from the transition between the second electronically excited state and the ground state of a singly ionized nitrogen molecule. After reviewing current interpretations of this emission process, which remains to be a controversial issue, we will focus on our interpretation that links stimulated emission in this scheme to superradiance. We will argue that electron recollisions play an essential role in establishing the superradiant gain.

This is a preview of subscription content, log in via an institution.

References

  1. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, Science 331(6016), 442–445 (2011)

    Article  ADS  Google Scholar 

  2. J. Yao et al., Phys. Rev. A 84, 051802(R) (2011)

    Article  ADS  Google Scholar 

  3. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Opt. Express 22(11), 12750–12759 (2014)

    Article  ADS  Google Scholar 

  4. H. Xu, E. Lotstedt, A. Iwasaki, K. Yamanouchi, Nat. Commun. 6, 8347 (2015)

    Article  ADS  Google Scholar 

  5. Y. Liu et al., Phys. Rev. Lett. 115, 133203 (2015)

    Article  ADS  Google Scholar 

  6. J. Yao et al., Phys. Rev. Lett. 116, 143007 (2016)

    Article  ADS  Google Scholar 

  7. A.J. Traverso et al., Proc. Natl. Acad. Sci. U. S. A. 109, 15185 (2012)

    Article  ADS  Google Scholar 

  8. A. Laurain, M. Scheller, P. Polynkin, Phys. Rev. Lett. 113, 253901 (2014)

    Article  ADS  Google Scholar 

  9. D. Kartashov et al., Phys. Rev. A 86(3), 033831 (2012)

    Article  ADS  Google Scholar 

  10. A. Dogariu, R.B. Miles, In Frontiers in Optics 2013/Laser Science XXIX, Orlando, Florida, 2013 (Orlando, Laser Science, 2013)

    Google Scholar 

  11. V. Kocharovsky et al., Proc. Natl. Acad. Sci. U S A. 102, 7806 (2005)

    Article  ADS  Google Scholar 

  12. Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B Lasers Opt. 76, 337 (2003)

    Article  ADS  Google Scholar 

  13. P.N. Malevich et al., Opt. Lett. 40, 2469 (2015)

    Article  ADS  Google Scholar 

  14. D. Kartashov et al., Phys. Rev. A 88, 041805(R) (2013)

    Article  ADS  Google Scholar 

  15. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Opt. Express 21(19), 22791–22798 (2013)

    Article  ADS  Google Scholar 

  16. P.J. Ding et al., Opt. Express 22, 29964 (2014)

    Article  ADS  Google Scholar 

  17. J. Yao et al., Opt. Express 22, 19005 (2014)

    Article  ADS  Google Scholar 

  18. S. Mitryukovskiy et al., Phys. Rev. Lett. 114, 063003 (2015)

    Article  ADS  Google Scholar 

  19. P.J. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Phys. Rev. A 94, 043824 (2016)

    Article  ADS  Google Scholar 

  20. T. Wang et al., Las. Phys. Lett. 10, 125401 (2013)

    Article  ADS  Google Scholar 

  21. S.L. Chin, H. Xu, Y. Cheng, Z. Xu, Chin. Opt. Lett. 10, 013201 (2013)

    Article  ADS  Google Scholar 

  22. D. Kartashov et al, Research in Optical Sciences, HTh4b. 5 (2016)

    Google Scholar 

  23. A. Azarm, P. Corkum, P. Polynkin, CLEO: Applications and Technology 2016, postdeadline paper JTh4B.9 (2016)

    Google Scholar 

  24. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47–198 (2007)

    Article  ADS  Google Scholar 

  25. H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, Chem. Phys. 360, 171–175 (2009)

    Article  ADS  Google Scholar 

  26. R. Arnold, S. Roberson, P.M. Pellegrino, Chem. Phys. 405, 9 (2012)

    Article  ADS  Google Scholar 

  27. A. Becker, A.D. Bandrauk, S.L. Chin, Chem. Phys. Let. 343, 345 (2001)

    Article  ADS  Google Scholar 

  28. P.H. Bucksbaum, M. Bashkansky, R.R. Freeman, T.J. McIlrath, L.F. DiMauro, Phys. Rev. Lett. 56, 2590–2593 (1986)

    Article  ADS  Google Scholar 

  29. P.B. Corkum, N.H. Burnett, F. Brunel, Phys. Rev. Lett. 62, 1259–1262 (1989)

    Article  ADS  Google Scholar 

  30. S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, J. Phys. B Atomic Mol. Phys. 48, 094003 (2015)

    Article  ADS  Google Scholar 

  31. X.-L. Liu, W. Cheng, M. Petrarca, P. Polynkin, Opt. Lett. 41, 4751 (2016)

    Article  ADS  Google Scholar 

  32. R.S. Kunabenchi, M.R. Gorbal, M.I. Savadatti, Prog. Quant. Electron. 9, 259 (1984)

    Article  ADS  Google Scholar 

  33. H.M. von Bergmann, V. Hasson, J. Phys. D. Appl. Phys. 11, 2341 (1978)

    Article  ADS  Google Scholar 

  34. T. Zhao et al., J. Phys. D : Appl. Phys. 46, 345201 (2013)

    Article  Google Scholar 

  35. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Appl. Phys. Lett. 98, 211102 (2011)

    Article  ADS  Google Scholar 

  36. J. Peñano et al., J. Appl. Phys. 111, 033105 (2012)

    Article  ADS  Google Scholar 

  37. E. Oliva et al., Phys. Rev. A 84, 013811 (2011)

    Article  ADS  Google Scholar 

  38. O. Larroche et al., Phys. Rev. A 62, 043815 (2000)

    Article  ADS  Google Scholar 

  39. T. Tabata, T. Shirai, M. Sataka, H. Kubo, At. Data Nucl. Data Tables 92, 375–406 (2006)

    Article  ADS  Google Scholar 

  40. R. Al’miev et al., Phys. Rev. Lett. 99, 123902 (2007)

    Article  ADS  Google Scholar 

  41. J. Yao et al., New J. Phys. 15, 023046 (2013)

    Article  ADS  Google Scholar 

  42. Y.D. Qin, H. Yang, C.J. Zhu, Q. Gong, Appl. Phys. B Lasers Opt. 71, 581–584 (2000)

    Article  ADS  Google Scholar 

  43. W. Chu et al., Las. Phys. Lett 11, 015301 (2014)

    Article  ADS  Google Scholar 

  44. J. Yao et al., Arxiv 1608, 05183 (2016)

    Google Scholar 

  45. H. Zhang et al., Phys. Rev. X, 041009 (2013)

    Article  Google Scholar 

  46. D. Kartashov et al, CLEO: science and innovations, QTh4E. 6 (2012)

    Google Scholar 

  47. G. Li et al., Phys. Rev. A 89, 033833 (2014)

    Article  ADS  Google Scholar 

  48. J.C. MacGillivray, M.S. Feld, Phys. Rev. A 14, 1169 (1976)

    Article  ADS  Google Scholar 

  49. H. Zhang et al., Phys. Rev. A 88, 063417 (2013)

    Article  ADS  Google Scholar 

  50. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  51. N.H. Burnett, C. Kan, P.B. Corkum, Phys. Rev. A 51, R3418 (1995)

    Article  ADS  Google Scholar 

  52. Y. Ivanov, T. Brabec, N. Burnett, Phys. Rev. A 54, 742 (1996)

    Article  ADS  Google Scholar 

  53. M. Kakehata, H. Takada, H. Yumoto, K. Miyazaki, Phys. Rev. A 55, R861 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge fruitful collaborations with Eduardo Oliva of Madrid Technical University (Spain), Shihua Chen of Southeast University (China), Nevel Ibrakoivc, Samuel Bengtsso, Cord Arnold, Hohan Mauritsson, and Anne L’Huiller of Lund University (Sweden), Arnaud Couairon of Ecole Polytechnique (France), Rostyslav Danylo of Ecole Polytechnique (France), Sergey Mitryukovskiy of Russian Quantum Center (Russia), and Vladimir Tikhonchuk of Bordeaux University (France). Y. Liu would like to thank Hongbing Jiang and Chengyin Wu of Peking University (China), Ya Cheng and Jinping Yao of SIOM (China), and Huailiang Xu of Jilin University (China) for the stimulating and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Ding, P., Houard, A., Mysyrowicz, A. (2018). The Role of Electron Collisions in Lasing in Neutral and Singly Ionized Molecular Nitrogen. In: Polynkin, P., Cheng, Y. (eds) Air Lasing. Springer Series in Optical Sciences, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65220-7_3

Download citation

Publish with us

Policies and ethics