Air Lasing pp 45-74 | Cite as

The Role of Electron Collisions in Lasing in Neutral and Singly Ionized Molecular Nitrogen

  • Yi LiuEmail author
  • Pengji Ding
  • Aurélien Houard
  • André Mysyrowicz
Part of the Springer Series in Optical Sciences book series (SSOS, volume 208)


In this chapter, we will discuss lasing actions in the air that follow the excitation with a short intense laser pulse at 800 nm. We will successively analyze two types of laser actions. The first type is based on the optical transition between the excited triplet states of the neutral nitrogen molecule. Based on the study of the dependence of the lasing signal on the polarization ellipticity of the pump pulse, we unambiguously attribute gain mechanism in this scheme to the electron collisions with neutral nitrogen molecules that result in population inversion. Experimental results on the dynamics of emissions in the forward and backward directions with respect to the direction of the pump pulse are confirmed by numerical simulations based on the Maxwell-Bloch equations. The second type of lasing stems from the transition between the second electronically excited state and the ground state of a singly ionized nitrogen molecule. After reviewing current interpretations of this emission process, which remains to be a controversial issue, we will focus on our interpretation that links stimulated emission in this scheme to superradiance. We will argue that electron recollisions play an essential role in establishing the superradiant gain.



We would like to acknowledge fruitful collaborations with Eduardo Oliva of Madrid Technical University (Spain), Shihua Chen of Southeast University (China), Nevel Ibrakoivc, Samuel Bengtsso, Cord Arnold, Hohan Mauritsson, and Anne L’Huiller of Lund University (Sweden), Arnaud Couairon of Ecole Polytechnique (France), Rostyslav Danylo of Ecole Polytechnique (France), Sergey Mitryukovskiy of Russian Quantum Center (Russia), and Vladimir Tikhonchuk of Bordeaux University (France). Y. Liu would like to thank Hongbing Jiang and Chengyin Wu of Peking University (China), Ya Cheng and Jinping Yao of SIOM (China), and Huailiang Xu of Jilin University (China) for the stimulating and fruitful discussions.


  1. 1.
    A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, Science 331(6016), 442–445 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    J. Yao et al., Phys. Rev. A 84, 051802(R) (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Opt. Express 22(11), 12750–12759 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    H. Xu, E. Lotstedt, A. Iwasaki, K. Yamanouchi, Nat. Commun. 6, 8347 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu et al., Phys. Rev. Lett. 115, 133203 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J. Yao et al., Phys. Rev. Lett. 116, 143007 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Traverso et al., Proc. Natl. Acad. Sci. U. S. A. 109, 15185 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Laurain, M. Scheller, P. Polynkin, Phys. Rev. Lett. 113, 253901 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    D. Kartashov et al., Phys. Rev. A 86(3), 033831 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dogariu, R.B. Miles, In Frontiers in Optics 2013/Laser Science XXIX, Orlando, Florida, 2013 (Orlando, Laser Science, 2013)Google Scholar
  11. 11.
    V. Kocharovsky et al., Proc. Natl. Acad. Sci. U S A. 102, 7806 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B Lasers Opt. 76, 337 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    P.N. Malevich et al., Opt. Lett. 40, 2469 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    D. Kartashov et al., Phys. Rev. A 88, 041805(R) (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Opt. Express 21(19), 22791–22798 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Ding et al., Opt. Express 22, 29964 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Yao et al., Opt. Express 22, 19005 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S. Mitryukovskiy et al., Phys. Rev. Lett. 114, 063003 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    P.J. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Phys. Rev. A 94, 043824 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    T. Wang et al., Las. Phys. Lett. 10, 125401 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S.L. Chin, H. Xu, Y. Cheng, Z. Xu, Chin. Opt. Lett. 10, 013201 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    D. Kartashov et al, Research in Optical Sciences, HTh4b. 5 (2016)Google Scholar
  23. 23.
    A. Azarm, P. Corkum, P. Polynkin, CLEO: Applications and Technology 2016, postdeadline paper JTh4B.9 (2016)Google Scholar
  24. 24.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47–198 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, Chem. Phys. 360, 171–175 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    R. Arnold, S. Roberson, P.M. Pellegrino, Chem. Phys. 405, 9 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A. Becker, A.D. Bandrauk, S.L. Chin, Chem. Phys. Let. 343, 345 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    P.H. Bucksbaum, M. Bashkansky, R.R. Freeman, T.J. McIlrath, L.F. DiMauro, Phys. Rev. Lett. 56, 2590–2593 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    P.B. Corkum, N.H. Burnett, F. Brunel, Phys. Rev. Lett. 62, 1259–1262 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, J. Phys. B Atomic Mol. Phys. 48, 094003 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    X.-L. Liu, W. Cheng, M. Petrarca, P. Polynkin, Opt. Lett. 41, 4751 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R.S. Kunabenchi, M.R. Gorbal, M.I. Savadatti, Prog. Quant. Electron. 9, 259 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    H.M. von Bergmann, V. Hasson, J. Phys. D. Appl. Phys. 11, 2341 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    T. Zhao et al., J. Phys. D : Appl. Phys. 46, 345201 (2013)CrossRefGoogle Scholar
  35. 35.
    P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Appl. Phys. Lett. 98, 211102 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J. Peñano et al., J. Appl. Phys. 111, 033105 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    E. Oliva et al., Phys. Rev. A 84, 013811 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    O. Larroche et al., Phys. Rev. A 62, 043815 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    T. Tabata, T. Shirai, M. Sataka, H. Kubo, At. Data Nucl. Data Tables 92, 375–406 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    R. Al’miev et al., Phys. Rev. Lett. 99, 123902 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    J. Yao et al., New J. Phys. 15, 023046 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Y.D. Qin, H. Yang, C.J. Zhu, Q. Gong, Appl. Phys. B Lasers Opt. 71, 581–584 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    W. Chu et al., Las. Phys. Lett 11, 015301 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    J. Yao et al., Arxiv 1608, 05183 (2016)Google Scholar
  45. 45.
    H. Zhang et al., Phys. Rev. X, 041009 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Kartashov et al, CLEO: science and innovations, QTh4E. 6 (2012)Google Scholar
  47. 47.
    G. Li et al., Phys. Rev. A 89, 033833 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    J.C. MacGillivray, M.S. Feld, Phys. Rev. A 14, 1169 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    H. Zhang et al., Phys. Rev. A 88, 063417 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    N.H. Burnett, C. Kan, P.B. Corkum, Phys. Rev. A 51, R3418 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Ivanov, T. Brabec, N. Burnett, Phys. Rev. A 54, 742 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    M. Kakehata, H. Takada, H. Yumoto, K. Miyazaki, Phys. Rev. A 55, R861 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yi Liu
    • 1
    • 2
    Email author
  • Pengji Ding
    • 1
    • 3
  • Aurélien Houard
    • 1
  • André Mysyrowicz
    • 1
  1. 1.Laboratorie d’Optique Appliquée, ENSTA ParisTech, CNRS, Ecole PolytechniqueUniversité Paris-SaclayPalaiseauFrance
  2. 2.Shanghai Key Lab for Modern Optical SystemUniversity of Shanghai for Science and TechnologyShanghaiChina
  3. 3.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations