Skip to main content

High-Gain Air Lasing by Multiphoton Pumping of Atomic Species

  • Chapter
  • First Online:
Air Lasing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 208))

Abstract

The possibility of achieving high-gain lasing from a remote location in air opens up numerous opportunities for the development of new concepts. Backward lasing has generated the most interest, since it may provide a high-sensitivity method for the detection of greenhouse gases, gas leakage from pipelines and refineries, pollution, illicit chemical and nuclear processing activities, chemical gas attacks, and the presence of explosives and hazardous materials. Other applications of high-gain air lasing are of significant interest and include “around-the-corner” illumination, clandestine communication, and a local “guide star” for the correction of aero-optical distortion. This chapter presents results of remote lasing in atmospheric pressure air from oxygen, nitrogen and hydrogen as well as backward lasing from inert gas species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.B. Miles, A. Dogariu, J.B. Michael, Bringing bombs to light. IEEE Spectr. 49, 38 (2012)

    Article  Google Scholar 

  2. A. Dogariu, J.B. Michael, R.B. Miles, Remote air lasing for trace detection. Proc. SPIE 8024, 80240H (2011)

    Article  ADS  Google Scholar 

  3. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High gain backward lasing in air. Science 331, 442 (2011)

    Article  ADS  Google Scholar 

  4. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, Remote backwards lasing in air. Conference on Lasers and Electro-Optics CLEO’2011 (Baltimore, MD 2011), paper JTuE2

    Google Scholar 

  5. A. Dogariu, J. Michael, and R. Miles, High gain atomic oxygen lasing in air. 42nd AIAA Plasmadynamics and Lasers Conference (Honolulu, HI, 2011), paper 2011–4001

    Google Scholar 

  6. A. Dogariu, J.B. Michael, R.B. Miles, Standoff stimulated emission in air. Proc. SPIE. 8366, 20 (2012)

    Google Scholar 

  7. A. Dogariu and R. B. Miles, Lasing in atmospheric air: similarities and differences of oxygen and nitrogen. in Frontiers in Optics 2013, OSA Technical Digest (2013), paper LTh2H.2

    Google Scholar 

  8. A. Dogariu and R. B. Miles, Nitrogen lasing in air. Conference on Lasers and Electro-Optics CLEO’2013 (San Jose, CA, 2013), paper QW1E.1

    Google Scholar 

  9. A. Dogariu, R. B. Miles, Backwards nitrogen double lasing in air for remote trace detection. in Imaging and Applied Optics 2014, OSA Technical Digest (2014), paper LW2D.3

    Google Scholar 

  10. A. Laurain, M. Scheller, P. Polynkin, Low-threshold bidirectional air lasing. Phys. Rev. Lett. 113, 253901 (2014)

    Article  ADS  Google Scholar 

  11. A. Dogariu and R. Miles, Remote backward-propagating lasing of nitrogen and oxygen in air. Conference on Lasers and Electro-Optics CLEO’2015 (San Jose, CA, 2015), invited paper SM1N.1

    Google Scholar 

  12. A. Dogariu, T.L. Chng, and R. B. Miles, Backwards lasing from minor species in air. 46th Winter Colloquium on the Physics of Quantum Electronics, (Snowbird, UT, 2016)

    Google Scholar 

  13. A. Dogariu, T. L. Chng, and R. B. Miles, Remote backward-propagating water lasing in atmospheric air. in CLEO: 2016, OSA Technical Digest (2016), paper AW4K.5

    Google Scholar 

  14. A. Dogariu, J. Li, R. B. Miles, Three-photon pumped backwards lasing in argon. OSA Light (Energy and Environment Congress, Suzhou, 2015)

    Google Scholar 

  15. A. Dogariu, R.B. Miles, Three-photon femtosecond pumped backwards lasing in argon. Opt. Express 24, A544 (2016)

    Article  ADS  Google Scholar 

  16. P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, Standoff spectroscopy via remote generation of a backward-propagating laser beam. Proc. Nat. Acad. Sci. 108, 3130–3143 (2011)

    Article  ADS  Google Scholar 

  17. A. E. Siegman, Lasers. (Mill Valley, University Science Books, 1986).

    Google Scholar 

  18. B.A. Reagan, K.A. Wernsing, A.H. Curtis, F.J. Furch, B.M. Luther, D. Patel, C.S. Menoni, J.J. Rocca, Demonstration of a 100-Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser. Opt. Lett. 37, 3624 (2012)

    Article  ADS  Google Scholar 

  19. J.C. Macgillivray, M.S. Feld, Superradiance in atoms and molecules. Contemp. Phys. 22, 299 (1981)

    Article  ADS  Google Scholar 

  20. M.N. Schneider, R.B. Miles, Microwave diagnostics of small plasma objects. J. Appl. Phys. 98, 0033301 (2006)

    Article  Google Scholar 

  21. T.A. Cool, Quantitative measurement of NO density by resonance three-photon ionization. Appl. Opt. 23, 1559 (1984)

    Article  ADS  Google Scholar 

  22. A. Dogariu, R.B. Miles, Detecting localized trace species using radar REMPI. Appl. Opt. 50, A68 (2011)

    Article  ADS  Google Scholar 

  23. D.C. Dai, Brief comment: Dicke superradiance and superfluorescence find application for remote sensing in air. ArXiv. 1108, 5360 (2011)

    Google Scholar 

  24. A.J. Traverso, R. Sanchez-Gonzalez, L. Yuan, K. Wang, D.V. Voronine, A.M. Zheltikov, Y. Rostovtsev, V.A. Sautenkov, A.V. Sokolov, S.W. North, M.O. Scully, Coherence brightened laser source for atmospheric remote sensing. Proc. Nat. Acad. Sci. 109, 15185 (2012)

    Article  ADS  Google Scholar 

  25. S. Alisauskas, A. Baltuska, R. Boyd, P. Polynkin, Backward air lasing with femtosecond pumping. CLEO Europe 2015, postdeadline paper PD-A.4

    Google Scholar 

  26. A. Dogariu, T. L. Chng, and R. Miles, Towards remote magnetic anomaly detection using Radar REMPI. CLEO 2014, paper SM4E.4

    Google Scholar 

  27. W.D. Kulatilaka, J.R. Gord, V.R. Katta, S. Roy, Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen. Opt. Lett. 37, 3051 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Office of Naval Research and from NASA through the SBIR program to MetroLaser, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Dogariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dogariu, A., Miles, R. (2018). High-Gain Air Lasing by Multiphoton Pumping of Atomic Species. In: Polynkin, P., Cheng, Y. (eds) Air Lasing. Springer Series in Optical Sciences, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65220-7_2

Download citation

Publish with us

Policies and ethics