Inclusion of “Self-x” Properties in the SESAME-Based Wireless Backhaul for Support of Higher Performance

  • Ioannis P. ChochliourosEmail author
  • Alan Whitehead
  • Oriol Sallent
  • Jordi Pérez-Romero
  • Anastasia S. Spiliopoulou
  • Athanassios Dardamanis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 744)


Based on the actual framework of the SESAME 5G-PPP EU-funded project, we identify the importance of the related wireless backhauling within the broader 5G innovative framework, with the pure aim of using small cells together with suitable network virtualization techniques for serving multiple tenants in a modern architectural approach. The virtualization of the network nodes and the wireless links allow for the development of a suitable SDN controller intending to perform network slicing, where the wireless backhaul resources are shared and assigned on a per-tenant basis. In order to apply SON features as they are also applied at the access radio level, the SDN controller is responsible for collecting and evaluating status information of the network (link qualities, status of wireless interfaces, ongoing traffic), thus resulting to self-planning, self-optimization and self-healing attributes.


5G Cloud-Enabled Small Cell (CESC) Network Functions Virtualization (NFV) Multi-tenancy Self-x properties Small Cell (SC) Software-Defined Networking (SDN) Wireless backhauling 



The present work has been performed in the scope of the SESAME (“Small cEllS CoordinAtion for Multi-tenancy and Edge services”) European Research Project and has been supported by the Commission of the European Communities (5G-PPP/H2020, Grant Agreement No. 671596).


  1. 1.
    Chochliouros, I.P., et al.: A model for an innovative 5G-oriented architecture, based on small cells coordination for multi-tenancy and edge services. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 666–675. Springer, Cham (2016). doi: 10.1007/978-3-319-44944-9_59 CrossRefGoogle Scholar
  2. 2.
    SESAME Project (GA No. 671596).
  3. 3.
    Naylon, G.: Why Wireless Backhaul Holds the Key to 5G (2016).
  4. 4.
    Jaber, M., Imran, M.A., Tafazolli, R., Tukmanov, A.: 5G backhaul challenges and emerging research directions: a survey. IEEE Access 4, 1743–1766 (2016)CrossRefGoogle Scholar
  5. 5.
    Gupta, A., Jha, R.K.: 5 survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)CrossRefGoogle Scholar
  6. 6.
    Chochliouros, I.P., Sfakianakis, E., et al.: Challenges for defining opportunities for growth in the 5G era: the SESAME conceptual model. In: Proceedings of the EuCNC-2016, pp. 1–5 (2016)Google Scholar
  7. 7.
    European Commission: Radio Spectrum Policy Group (RSPG) – Report on Spectrum Issues on Wireless Backhaul (RSPG15-607). European Commission (2015)Google Scholar
  8. 8.
    Next Generation Mobile Network Alliance (NGMN-A): Small Cell Backhaul Requirements. White Paper. NGMN-Alliance, Frankfurt, Germany (2012)Google Scholar
  9. 9.
    Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., et al.: The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)CrossRefGoogle Scholar
  10. 10.
    Soldani, D., Manzalini, A.: Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Veh. Technol. Mag. 10(1), 32–42 (2015)CrossRefGoogle Scholar
  11. 11.
    SESAME 5G-PPP Project: Deliverable 2.3: Specification of the CESC Components – First Iteration (2016)Google Scholar
  12. 12.
    Bernardos, C.J., De Domenico, A., Ortin, J., Rost, R., Wubben, D.: Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In: Proceedings of Future Network Summit 2013, pp. 1–10. IEEE (2013)Google Scholar
  13. 13.
    Dräxler, M., Karl, H.: Dynamic Backhaul Network Configuration in SDN-Based Cloud RANs.
  14. 14.
    Ramiro, J., Hamied, K.: Self-Organizing Networks. Self-planning, self-optimization and Self-healing for GSM, UMTS and LTE. Wiley, Hoboken (2012)Google Scholar
  15. 15.
    Sánchez-González, J., Pérez-Romero, J., Agustí, R., Sallent, O.: On learning mobility patterns in cellular networks. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 686–696. Springer, Cham (2016). doi: 10.1007/978-3-319-44944-9_61 CrossRefGoogle Scholar
  16. 16.
    Medved, J., Tkacik, A., Varga, R., Gray, K.: Opendaylight: towards a model-driven SDN controller architecture. In: Proceedings of the WoWMoM-2014, pp. 1–6. IEEE (2014)Google Scholar
  17. 17.
    Bojic, D., Sasaki, E., Svijetic, N., et al.: Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Commun. Mag. 51(9), 86–93 (2013)CrossRefGoogle Scholar
  18. 18.
    Huawei Technologies Co., Ltd.: 5G Network Architecture - A High Level Perspective. Shenzen, China (2016)Google Scholar
  19. 19.
    Fajardo, J.O., Liberal, F., Giannoulakis, I., Kafetzakis, M., Pii, V., Trajkovska, I., Bohnert, T.M., Goratti, L., et al.: Introducing mobile edge computing capabilities through distributed 5G cloud enabled small cells. Mob. Netw. Appl. 21(2), 564–574 (2016). SpringerCrossRefGoogle Scholar
  20. 20.
    Small Cell Forum (SFC): Virtualization for Small Cells: Overview (Document (2015).
  21. 21.
    Small Cell Forum (SFC): Small Cell Virtualization Functional Splits and Use Cases (Document 159.07.02) (2016).
  22. 22.
    European Telecommunications Standards Institute (ETSI): Network Functions Virtualisation - Introductory White Paper. ETSI, Sophia-Antipolis (2012).
  23. 23.
    Basta, A., Kellerer, W., Hoffmann, M., Hoffmann, K., Schmidt, E.D.: A virtual SDN-enabled LTE EPC architecture: a case study for S−/P-gateways functions. In: Proceedings of SDN4FNS-2013, pp. 1–7. IEEE (2013)Google Scholar
  24. 24.
    Chourasia, S., Sivalingam, K.M.: SDN based evolved packet core architecture for efficient user mobility support. In: Proceedings of the 1st IEEE Conference on Network Softwarization (NetSoft-2015), pp. 1–5. IEEE (2015)Google Scholar
  25. 25.
    Pérez-Romero, J., Sallent, O., Ruiz, C., Betzler, A., et al.: Self X in SESAME. In: Proceedings of the EuCNC-2016, pp. 1–5 (2016)Google Scholar
  26. 26.
    Belschner, J., Arnold, P., Eckhardt, H., Kühn, E., Patouni, E., et al.: Optimization of radio access network operation introducing self-x functions. In: Proceedings of the 69th IEEE VTC, pp. 1–5. IEEE (2016)Google Scholar
  27. 27.
    European Telecommunications Standards Institute (ETSI): TS 132 500: LTE; Self-Organizing Networks (SON); Concepts and requirements (Release 12). ETSI, Sophia-Antipolis (2015)Google Scholar
  28. 28.
    The Third Generation Partnership Project (3GPP): TS 32.522 v11.7.0: Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11). 3GPP (2013)Google Scholar
  29. 29.
    3GPP: TS 32.522 v11.7.0: Self-Organizing Networks (SON) Policy Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS) (Release 11). 3GPP (2013)Google Scholar
  30. 30.
    Wilson, R.A., Keil, F.C.: The MIT Encyclopedia of the Cognitive Sciences. MIT Press, Cambridge (1999)Google Scholar
  31. 31.
    Biglieri, E., Goldsmith, A.J., Greenstein, L.J., Mandayam, N.B., Poor, H.V.: Principles of Cognitive Radio. Cambridge University Press, New York (2012)CrossRefGoogle Scholar
  32. 32.
    Kumar, N., Nidhi, K.N., Acharya, S.: A survey on SDN: an unprecedented approach in networking. Int. J. Eng. Comput. Sci. 5(2), 15668–15672 (2016)Google Scholar
  33. 33.
    Yamamoto, T., Komine, T., Konishi, S.: Mobility load balancing scheme based on cell reselection. In: Proceedings of ICWMC-2012, pp. 381–387. IARIA (2012)Google Scholar
  34. 34.
    Small Cell Forum (SFC): SON API for Small Cells (Document 083.05.01). SFC (2015).
  35. 35.
    Blanco, B., Fajardo, J.O., Liberal, F.: Design of cognitive cycles in 5G networks. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 697–708. Springer, Cham (2016). doi: 10.1007/978-3-319-44944-9_62 CrossRefGoogle Scholar
  36. 36.
    Drutskoy, D., Keller, E., Rexford, J.: Scalable network virtualization in software-defined networks. IEEE Internet Comput. 17(2), 20–27 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ioannis P. Chochliouros
    • 1
    Email author
  • Alan Whitehead
    • 2
  • Oriol Sallent
    • 3
  • Jordi Pérez-Romero
    • 3
  • Anastasia S. Spiliopoulou
    • 1
  • Athanassios Dardamanis
    • 4
  1. 1.Hellenic Telecommunications Organization (OTE) S.A.AthensGreece
  2. 2.IP.Access Ltd.Cambourne, CambridgeUK
  3. 3.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  4. 4.SmartNet S.A.Agios Dimitrios, AtticaGreece

Personalised recommendations