The Semantic Web as a Platform Against Risk and Uncertainty in Agriculture

  • Wilmer Henry Illescas Espinoza
  • Alejandro Fernandez
  • Diego Torres
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 506)

Abstract

In this article, we discuss existing literature on DSS in agriculture, on DSS that use data available in the Semantic Web, and on Semantic Web initiatives focusing on agriculture information. Our goal is to assess the readiness of the Semantic Web as a platform to empower DSS that can keep risk and uncertainty in agriculture under control. Key agricultural activities targeted by DSS reported in literature are nutrient management, insect and pest management, land use and planning, environmental change and forecasting, and water and drought management. The most relevant use of Semantic Web in DSS, is in data analysis, as a means of making DSS more intelligent. There are initiatives to produce vocabularies and semantic repositories in the domain of agriculture. However, data and models are still isolated in specific domain repositories, and interoperability is still weak.

Keywords

Decision Support Systems Semantic Web Agriculture 

Notes

Acknowledgments

Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015.

References

  1. 1.
    Kochenderfer, M.J., Reynolds, H.J.D.: Decision Making Under Uncertainty: Theory and Application. MIT Press, Cambridge (2015)Google Scholar
  2. 2.
    Power, D.J.: Decision Support Systems: Concepts and Resources for Managers. Greenwood Publishing Group, Westport (2002)Google Scholar
  3. 3.
    Turban, E.: Decision Support and Expert Systems: Management Support Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA (1993)MATHGoogle Scholar
  4. 4.
    Zaraté, P., Kersten, G.E., Hernández, J.E. (eds.): Group Decision and Negotiation. A Process-Oriented View, vol. 180. Springer International Publishing, Cham (2014)Google Scholar
  5. 5.
    Decision Support Systems. Elsevier. ISSN: 0167-9236Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284, 34–43 (2001)CrossRefGoogle Scholar
  7. 7.
    Hendler, J.: Web 3.0 Emerging. Computer (Long. Beach. Calif). 42 (2009)Google Scholar
  8. 8.
    Mir, S.A., Qasim, M., Arfat, Y., Mubarak, T., Bhat, Z.A., Bhat, J.A., Bangroo, S.A., Sofi, T.A.: Decision support systems in a global agricultural perspective - a comprehensive review. Int. J. Agric. Sci. 7, 403–415 (2015)Google Scholar
  9. 9.
    Ritchie, J.T.: Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8, 1204–1213 (1972)CrossRefGoogle Scholar
  10. 10.
    Jorgensen, M.S., Detlefsen, N.K., Hutchings, N.J.: FarmN: A decision support tool for managing Nitrogen flow at the farm level. EFITA/WCCA. 25–28 (2005)Google Scholar
  11. 11.
    Manos, B., Ciani, A., Bournaris, T., Vassiliadou, I., Papathanasiou, J.: A taxonomy survey of decision support systems in agriculture. Agric. Econ. Rev. 5(2), 191–203 (2004)Google Scholar
  12. 12.
    Edwards-Jones, G.: Knowledge-based systems for crop protection: theory and practice. Crop Prot. 12, 565–578 (1993)CrossRefGoogle Scholar
  13. 13.
    Blomqvist, E.: The use of Semantic Web technologies for decision support–a survey. Semant. Web. 5, 177–201 (2014)Google Scholar
  14. 14.
    Bouamrane, M.-M., Rector, A., Hurrell, M.: A hybrid architecture for a preoperative decision support system using a rule engine and a reasoner on a clinical ontology. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 242–253. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05082-4_17 CrossRefGoogle Scholar
  15. 15.
    Bouamrane, M.-M., Rector, A., Hurrell, M.: Experience of using OWL ontologies for automated inference of routine pre-operative screening tests. In: Patel-Schneider, Peter F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, Jeff Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 50–65. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17749-1_4 CrossRefGoogle Scholar
  16. 16.
    Buranarach, M., Supnithi, T., Chalortham, N., Khunthong, V., Varasai, P., Kawtrakul, A.: A semantic web framework to support knowledge management in chronic disease healthcare. In: Sartori, F., Sicilia, M.Á., Manouselis, N. (eds.) MTSR 2009. CCIS, vol. 46, pp. 164–170. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04590-5_15 CrossRefGoogle Scholar
  17. 17.
    Tao, C., Solbrig, Harold R., Sharma, Deepak K., Wei, W.-Q., Savova, Guergana K., Chute, Christopher G.: Time-oriented question answering from clinical narratives using semantic-web techniques. In: Patel-Schneider, Peter F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, Jeff Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 241–256. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17749-1_16 CrossRefGoogle Scholar
  18. 18.
    González, A.R., Fernandez, J., Jimenez, E., Mencke, M., Radzimski, M., Gomez, J.M., Alor-Hernandez, G., Posada-Gomez, R.: MEDFINDER-Using semantic web, web 2.0 and geolocation methods to develop a decision support system to locate doctors. In: WEBIST, pp. 288–293 (2009)Google Scholar
  19. 19.
    Baker, C.J.O., Shaban-Nejad, A., Su, X., Haarslev, V., Butler, G.: Semantic web infrastructure for fungal enzyme biotechnologists. Web Semant. Sci. Serv. Agents World Wide Web. 4, 168–180 (2006)CrossRefGoogle Scholar
  20. 20.
    Bell, D., Nguyen, T.: Proximal business intelligence on the semantic web. In: Nelson, M.L., et al. (eds.) Sustainable e-Business Management. LNBIP, vol. 58, pp. 145–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Bouamrane, M.-M., Rector, A., Hurrell, M.: Semi-automatic generation of a patient preoperative knowledge-base from a legacy clinical database. Move Meaningful Internet Syst. OTM 2009, 1224–1237 (2009)CrossRefGoogle Scholar
  22. 22.
    Torres, D.: Co-Evolution between Social and Semantic Web (2014)Google Scholar
  23. 23.
    Mendoza, L., Zuccarelli, G., Díaz, A., Fernández, A.: The semantic web as a platform for collective intelligence. In: Baloian, N., Burstein, F., Ogata, H., Santoro, F., Zurita, G. (eds.) CRIWG 2014. LNCS, vol. 8658, pp. 255–262. Springer, Cham (2014). doi:10.1007/978-3-319-10166-8_22 Google Scholar
  24. 24.
    Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, S.: Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. (2016)Google Scholar
  25. 25.
    Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y., Keizer, J.: The AGROVOC linked dataset. Semant. Web. 4, 341–348 (2013)Google Scholar
  26. 26.
    Reges, H.W., Doesken, N., Turner, J., Newman, N., Bergantino, A., Schwalbe, Z.: COCORAHS: the evolution and accomplishments of a volunteer rain gauge network. Bull. Am. Meteorol. Soc. 97, 1831–1846 (2016)CrossRefGoogle Scholar
  27. 27.
    Chaudhary, S., Bhise, M., Banerjee, A., Goyal, A., Moradiya, C.: Agro advisory system for cotton crop (2015)Google Scholar
  28. 28.
    Walisadeera, A.I., Wikramanayake, G.N., Ginige, A.: Designing a farmer centred ontology for social life network. In: DATA, pp. 238–247 (2013)Google Scholar
  29. 29.
    Jonquet, C., Toulet, A., Arnaud, E., Aubin, S., Yeumo, E.D., Emonet, V., Pesce, V., Larmande, P.: AgroPortal: an open repository of ontologies and vocabularies for agriculture and nutrition data. In: GODAN Summit (2016)Google Scholar
  30. 30.
    Thunkijjanukij, A., Kawtrakul, A., Panichsakpatana, S., Veesommai, U.: Rice production knowledge management: criteria for ontology development. Thai J. Agric. Sci. 42, 115–124 (2009)Google Scholar
  31. 31.
    Xie, N., Wang, W., Yang, Y.: Ontology-based agricultural knowledge acquisition and application. In: Li, D. (ed.) CCTA 2007. IFIP, vol. 258, pp. 349–357. Springer, Boston, MA (2008). doi:10.1007/978-0-387-77251-6_38 CrossRefGoogle Scholar
  32. 32.
    Pokharel, S., Sherif, M.A., Lehmann, J.: Ontology based data access and integration for improving the effectiveness of farming in nepal. In: Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 02, pp. 319–326. IEEE Computer Society (2014)Google Scholar
  33. 33.
    Kang, J.C., Gao, J.L.: Application of ontology technology in agricultural information retrieval. Adv. Mater. Res. 756–759, 1249–1253 (2013)CrossRefGoogle Scholar
  34. 34.
    McDermid, S., Gowtham, R., Bhuvaneswari, K., Vellingiri, G., Arunachalam, L.: The impacts of climate change on Tamil Nadu rainfed maize production: a multi-model approach to identify sensitivities and uncertainties. Curr. Sci. 110, 1257 (2016)Google Scholar
  35. 35.
    Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., Foster, I.: The parallel system for integrating impact models and sectors (pSIMS). Environ. Model Softw. 62, 509–516 (2014)CrossRefGoogle Scholar
  36. 36.
    Malone, T.W., Bernstein, M.S.: Handbook of Collective Intelligence. MIT Press, Cambridge (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Wilmer Henry Illescas Espinoza
    • 1
  • Alejandro Fernandez
    • 2
    • 3
  • Diego Torres
    • 2
    • 3
    • 4
  1. 1.Universidad Técnica de MachalaMachalaEcuador
  2. 2.LIFIA, Fac. InformáticaUNLPLa PlataArgentina
  3. 3.Comision de Investigaciones Científicas de Buenos Aires (CIC)Buenos AiresArgentina
  4. 4.Departamento de Ciencia y TecnologíaUNQBernalArgentina

Personalised recommendations