Advertisement

Self-learning Production Control Using Algorithms of Artificial Intelligence

  • Ben LuetkehoffEmail author
  • Matthias Blum
  • Moritz Schroeter
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 506)

Abstract

Manufacturing companies are facing an increasingly turbulent market – a market defined by products growing in complexity and shrinking product life cycles. This leads to a boost in planning complexity accompanied by higher error sensitivity. In practice, IT systems and sensors integrated into the shop floor in the context of Industry 4.0 are used to deal with these challenges. However, while existing research provides solutions in the field of pattern recognition or recommended actions, a combination of the two approaches is neglected. This leads to an overwhelming amount of data without contributing to an improvement of processes. To address this problem, this study presents a new platform-based concept to collect and analyze the high-resolution data with the use of self-learning algorithms. Herby, patterns can be identified and reproduced, allowing an exact prediction of the future system behavior. Artificial intelligence maximizes the automation of the reduction and compensation of disruptive factors.

Keywords

Production control Self-learning algorithms Data analytics 

References

  1. 1.
    Kropp, S.K.: Entwicklung eines Ereignismodells als Grundlage der Produktionsregelung, 1st edn. Schriftenreihe Rationalisierung, vol. 137. Apprimus, Aachen (2016)Google Scholar
  2. 2.
    Schuh, G., Blum, M.: Design of a data structure for the order processing as a basis for data analytics methods. In: Portland International Conference on Management of Engineering and Technology (PICMET), pp. 2164–2169, Honolulu (2016)Google Scholar
  3. 3.
    Meier, C.: Echtzeitfähige Produktionsplanung und -regelung in der Auftragsabwicklung des Maschinen- und Anlagenbaus, 1st edn. Edition Wissenschaft, vol. 117. Apprimus, Aachen (2013)Google Scholar
  4. 4.
    Hamann, T.: Lernfähige intelligente Produktionsregelung. Informationstechnische Systeme und Organisation von Produktion und Logistik, vol. 7. GITO, Heidelberg (2008)Google Scholar
  5. 5.
    Hauptvogel, A.: Bewertung und Gestaltung von cyber-physischer Feinplanung, 1st edn. Produktionssystematik, vol. 6. Apprimus Verlag, Aachen (2015)Google Scholar
  6. 6.
    Knabke, T., Olbrich, S., Lehner, W., Piller, G. (eds.): Towards agile BI: applying in-memory technology to data warehouse architectures (2011)Google Scholar
  7. 7.
    Stich, V., Hering, N.: Daten und Software als entscheidender Wettbewerbsfaktor. Industrie 4.0 Magazin: Zeitschrift für integrierte Produktionsprozesse, pp. 8–13 (2015)Google Scholar
  8. 8.
    Kletti, J., Schumacher, J.: Die perfekte Produktion. Manufacturing Excellence durch Short Interval Technology (SIT), 2nd edn. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Simon, D.: Fertigungsregelung durch zielgrößenorientierte Planung und logistisches Störungsmanagement. iwb Forschungsberichte, vol. 85. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Zetlmayer, H.: Verfahren zur simulationsgestützten Produktionsregelung in der Einzel- und Kleinserienproduktion. iwb Forschungsberichte, Bd. vol. 74. Springer, Berlin, New York (1994)Google Scholar
  11. 11.
    Selke, C.: Entwicklung von Methoden zur automatischen Simulationsmodellgenerierung, vol. 193. Utz, München (2005)Google Scholar
  12. 12.
    Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-agent system design for safety-critical self-optimizing mechatronic systems with UML. In: Crocker, R. (ed.) Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and Applications, pp. 21–23. n.n. (2003)Google Scholar
  13. 13.
    Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016), http://arxiv.org/pdf/1603.02199
  14. 14.
    Schneider, B.: Neuronale Netze für betriebliche Anwendungen: Anwendungspotentiale und existierende Systeme. Universität Münster (1993)Google Scholar
  15. 15.
    Huang, S.H., Hong-Chao Zhang: artificial neural networks in manufacturing. Concepts, applications, and perspectives. IEEE Trans. Compon. Packag. Manuf. Technol. Part A, 212–228 (1994)Google Scholar
  16. 16.
    Kulkarni, U.R., Kiang, M.Y.: Dynamic grouping of parts in flexible manufacturing systems — a self-organizing neural networks approach. Eur. J. Oper. Res., 192–212 (1995)Google Scholar
  17. 17.
    Reddy, D.C., Ghosh, K., Vardhan, V.A.: Identification and interpretation of manufacturing process patterns through neural networks. Math. Comput. Model., 15–36 (1998)Google Scholar
  18. 18.
    Scholz-Reiter, B., Hamann, T., Gronau, N., Bogen, J.: Fallbasierte neuronale Produktionsregelung: Nutzung des Case-Based Reasoning zur Produktionsregelung mit neuronalen Netzen. wt - Werkstattstechnik Online, pp. 293–298 (2005)Google Scholar
  19. 19.
    Di Orio, G., Cândido, G., Barata, J.: Self-Learning production systems: a new production paradigm. In: Sustainable Design and Manufacturing, Part 2, pp. 887–898 (2014 )Google Scholar
  20. 20.
    Bergmann, S., Straßburger, S., Schulze, T.: Automatische Generierung adaptiver Modelle zur Simulation von Produktionssystemen. TU Ilmenau Universitätsbibliothek, Ilmenau (2014)Google Scholar
  21. 21.
    Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: Dario, P., Chatila, R. (eds.) Robotics Research. The Eleventh International Symposium. STAR, vol. 15, pp. 561–572. Springer, Heidelberg (2005). doi: 10.1007/11008941_60 Google Scholar
  22. 22.
    Schuh, G., Blum, M., Reschke, J., Birkmeier, M.: Der Digitale Schatten in der Auftragsabwicklung. ZWF, 48–51 (2016)Google Scholar
  23. 23.
    Gröger, C., Kassner, L., Hoos, E., Königsberger, J., Kiefer, C., Silcher, S., Mitschang, B.: The Data-driven Factory. In: ICEIS 2016, pp. 40–54 (2016)Google Scholar
  24. 24.
    Kassner, L., Gröger, C., Mitschang, B., Westkämper, E.: Product life cycle analytics – next generation data analytics on structured and unstructured data. In: Procedia CIRP, pp. 35–40 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Ben Luetkehoff
    • 1
    Email author
  • Matthias Blum
    • 1
  • Moritz Schroeter
    • 1
  1. 1.Production ManagementFIR at RWTH Aachen UniversityAachenGermany

Personalised recommendations