The Network Structure of Visited Locations According to Geotagged Social Media Photos

Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 506)

Abstract

Businesses, tourism attractions, public transportation hubs and other points of interest are not isolated but part of a collaborative system. Making such collaborative network surface is not always an easy task. The existence of data-rich environments can assist in the reconstruction of collaborative networks. They shed light into how their members operate and reveal a potential for value creation via collaborative approaches. Social media data are an example of a means to accomplish this task. In this paper, we reconstruct a network of tourist locations using fine-grained data from Flickr, an online community for photo sharing. We have used a publicly available set of Flickr data provided by Yahoo! Labs. To analyse the complex structure of tourism systems, we have reconstructed a network of visited locations in Europe, resulting in around 180,000 vertices and over 32 million edges. An analysis of the resulting network properties reveals its complex structure.

Keywords

Complex networks Social media Collaborative tourism YFCC100M dataset Travelling patterns Social networks 

References

  1. 1.
    Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)CrossRefGoogle Scholar
  2. 2.
    Manovich, L.: Trending: the promises and the challenges of big social data. In: Gold, M.K. (ed.) Debates in the Digital Humanities, pp. 460–475. University of Minnesota Press (2012)Google Scholar
  3. 3.
    Metcalf, J., Keller, E.F., Boyd, D.: Perspectives on Big Data, Ethics, and Society, The Council for Big Data, Ethics and Society (2016)Google Scholar
  4. 4.
    Cuquet, M., Vega-Gorgojo, G., Lammerant, H., Finn, R., Ul Hassan, U.: Societal impacts of big data: challenges and opportunities in Europe (2017). arXiv preprint: arXiv:1704.03361
  5. 5.
    Diebold, F.X.: ‘Big Data’ dynamic factor models for macroeconomic measurement and forecasting. In: Advances in Economics and Econometrics, Eighth World Congress of the Econometric Society, vol. 32(1), pp. 115–122 (2003)Google Scholar
  6. 6.
    Ojo, A., Porwol, L., Waqar, M., Stasiewicz, A., Osagie, E., Hogan, M., Harney, O., Zeleti, F.A.: Realizing the innovation potentials from open data: stakeholders’ perspectives on the desired affordances of open data environment. In: Afsarmanesh, H., Camarinha-Matos, L.M., Lucas Soares, A. (eds.) PRO-VE 2016. IFIP AICT, vol. 480, pp. 48–59. Springer, Cham (2016). doi:10.1007/978-3-319-45390-3_5 CrossRefGoogle Scholar
  7. 7.
    Cook, A., Blom, H.A.P., Lillo, F., Mantegna, R.N., Miccichè, S., Rivas, D., Vázquez, R., Zanin, M.: Applying complexity science to air traffic management. J. Air Transp. Manag. 42, 149–158 (2015)CrossRefGoogle Scholar
  8. 8.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLoS ONE 6(5), e19869 (2011)CrossRefGoogle Scholar
  10. 10.
    Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Social science. computational social science. Science 323(5915), 721–723 (2009)CrossRefGoogle Scholar
  11. 11.
    Kaluza, P., Kolzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. J. R. Soc. Interface 7(48), 1093–1103 (2010)CrossRefGoogle Scholar
  12. 12.
    Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., White, D.R.: Economic networks: the new challenges. Science 325(5939), 422–425 (2009)MathSciNetMATHGoogle Scholar
  13. 13.
    Harb, A., Hajlaoui, K., Boucher, X.: Competence mining for collaborative virtual enterprise. In: Camarinha-Matos, L.M., Pereira-Klen, A., Afsarmanesh, H. (eds.) PRO-VE 2011. IFIP AICT, vol. 362, pp. 351–358. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23330-2_39 CrossRefGoogle Scholar
  14. 14.
    Benaben, F., Montarnal, A., Fertier, A., Truptil, S.: Big-Data and the Question of Horizontal and Vertical Intelligence: A Discussion on Disaster Management, pp. 156–162. Springer, Cham (2016)Google Scholar
  15. 15.
    Miguéns, J.I.L., Mendes, J.F.F.: Travel and tourism: into a complex network. Phys. A Stat. Mech. Appl. 387(12), 2963–2971 (2008)CrossRefGoogle Scholar
  16. 16.
    Shih, H.-Y.: Network characteristics of drive tourism destinations: an application of network analysis in tourism. Tour. Manag. 27(5), 1029–1039 (2006)CrossRefGoogle Scholar
  17. 17.
    Baggio, R., Scott, N., Cooper, C.: Network science. Ann. Tour. Res. 37(3), 802–827 (2010)CrossRefGoogle Scholar
  18. 18.
    Scott, N., Cooper, C., Baggio, R.: Destination networks. Ann. Tour. Res. 35(1), 169–188 (2008)CrossRefGoogle Scholar
  19. 19.
    González-Díaz, B., Gómez, M., Molina, A.: Configuration of the hotel and non-hotel accommodations: an empirical approach using network analysis. Int. J. Hosp. Manag. 48, 39–51 (2015)CrossRefGoogle Scholar
  20. 20.
    Crampton, J.W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M.W., Zook, M.: Beyond the geotag: situating ‘big data’ and leveraging the potential of the geoweb. Cartogr. Geogr. Inf. Sci. 40(2), 130–139 (2013)CrossRefGoogle Scholar
  21. 21.
    Paldino, S., Bojic, I., Sobolevsky, S., Ratti, C., González, M.C.: Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 4(1), 5 (2015)CrossRefGoogle Scholar
  22. 22.
    Alshamsi, A., Awad, E., Almehrezi, M., Babushkin, V., Chang, P.-J., Shoroye, Z., Tóth, A.-P., Rahwan, I.: Misery loves company: happiness and communication in the city. EPJ Data Sci. 4(1), 7 (2015)CrossRefGoogle Scholar
  23. 23.
    Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., Ratti, C.: Geo-located twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 41(3), 260–271 (2014)CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Sui, Z., Kang, C., Gao, Y.: Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 9(1), e86026 (2014)CrossRefGoogle Scholar
  25. 25.
    Zarmehri, M.N., Soares, C.: Collaborative data analysis in hyperconnected transportation systems. In: Afsarmanesh, H., Camarinha-Matos, L.M., Lucas Soares, A. (eds.) PRO-VE 2016. IFIP AICT, vol. 480, pp. 13–23. Springer, Cham (2016). doi:10.1007/978-3-319-45390-3_2 CrossRefGoogle Scholar
  26. 26.
    Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li, L.-J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)CrossRefGoogle Scholar
  27. 27.
    Tang, M., Nie, F., Jain, R.: Capped Lp-norm graph embedding for photo clustering. In: Proceedings of the 2016 ACM on Multimedia Conference - MM 2016, pp. 431–435 (2016)Google Scholar
  28. 28.
    Zahálka, J., Rudinac, S., Jónsson, B.Þ., Koelma, D.C., Worring, M.: Interactive multimodal learning on 100 million images. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval - ICMR 2016, pp. 333–337 (2016)Google Scholar
  29. 29.
    Pongpaichet, S., Tang, M., Jalali, L., Jain, R.: Using photos as micro-reports of events. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval - ICMR 2016, pp. 87–94 (2016)Google Scholar
  30. 30.
    Chen, D., Ong, C.S., Xie, L.: Learning points and routes to recommend trajectories. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management - CIKM 2016, pp. 2227–2232 (2016)Google Scholar
  31. 31.
    Barabási, A.-L.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRefGoogle Scholar
  33. 33.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Fanlens.ioBaumkirchenAustria
  2. 2.Universität InnsbruckInnsbruckAustria

Personalised recommendations