Influence of Composite Fatigue Properties on Marine Tidal Turbine Blade Design

  • Vesna Jaksic
  • Ciaran R. Kennedy
  • David M. Grogan
  • Sean B. Leen
  • Conchúr M. Ó. Brádaigh
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 245)


The structural design of marine tidal turbine blades is governed by the hydrodynamic shape of the aerofoil, extreme loadings and composite material mechanical properties. The design of the aerofoil, chord and twist distribution along the blade is generated to optimise turbine performance over its life time. Structural design gives the optimal layout of composite laminae such that ultimate strength and buckling resistance requirements are satisfied. Most structural design approaches consider only extreme static loads, with a lack of dynamic load-based fatigue design for tidal blades. Approaches for tidal turbine blade design based on dry and immersed composite material fatigue life are studied.


Composites Marine environment Fatigue properties Tidal turbine blades Design 



The authors would like to acknowledge funding from Science Foundation Ireland (SFI) through the Advance Award (14/ADV/RC3022) and the Marine and Renewable Energy Ireland (MaREI) Centre, Grant No. 12/RC/2305; and from the European Union under Framework 7, through the MARINCOMP Project, Grant agreement no.: FP7-612,531.


  1. 1.
    NASA (2016) TOPEX/Poseidon: revealing hidden tidal energy. Retrieved 14.10.2016, 2016, from
  2. 2.
    UKCE (2012) UK wave and tidal key resource areas project summary report the crown estate. Retrieved from
  3. 3.
    SEI (2006) Tidal and current energy resources in ireland report. Dublin, IrelandGoogle Scholar
  4. 4.
    Magagna D, Uihlein A (2015) Ocean energy development in Europe: Current status and future perspectives. Int J Mar Energ 11:84–104. CrossRefGoogle Scholar
  5. 5.
    O’Rourke F, Boyle F, Reynolds A (2010) Tidal current energy resource assessment in Ireland: Current status and future update. Renew Sustain Energy Rev 14(9):3206–3212CrossRefGoogle Scholar
  6. 6.
    Little C, Grimwade J, Court RS (2012) Recommendations on the structural testing requirements for tidal stream blades paper presented at the ICOE2012, Dublin, Ireland.
  7. 7.
    Jaksic V, Kennedy CR, Leen SB, Brádaigh CMÓ (2016, 21–22 March) Tidal turbine blade design from a fatigue point of view. In: paper presented at the oxford tidal energy workshop, OTE2016, department of engineering science, Oxford, UKGoogle Scholar
  8. 8.
    Davies P, Rajapakse YDS (2014) Durability of composite in marine environment (vol. 208): SpringerGoogle Scholar
  9. 9.
    Grogan D, Leen S, Kennedy C, Brádaigh CO (2013) Design of composite tidal turbine blades. Renew Energ 57:151–162CrossRefGoogle Scholar
  10. 10.
    Fagan EM, Kennedy CR, Leen SB, Goggins J (2016) Damage mechanics based design methodology for tidal current turbine composite blades. Renew Energ 97:358–372. CrossRefGoogle Scholar
  11. 11.
    MARINCOMP: EU FP 7 Marie Curie IAPP Project MARINCOMP—“Novel Composite Materials and Processes for Marine Renewable Energy”, Grant agreement number: FP7-612531, Funded under: FP7-People.
  12. 12.
    Baba NB, Suhaimi AS, Mohd Amin MA, Mohd A (2015) Study on mechanical and physical behaviour of hybrid GFRP. Adv Mater Sci Eng 2015:7. CrossRefGoogle Scholar
  13. 13.
    Kennedy CR, Leen SB, Ó Brádaigh CM (2016) Immersed fatigue performance of glass fibre-reinforced composites for tidal turbine blade applications. J Bio-and Tribo-Corrosion 2(2):1–10.
  14. 14.
    Degrieck J, Van Paepegem W (2001) Fatigue damage modeling of fibre-reinforced composite materials: review. Appl Mech Rev 54(4):279–300CrossRefGoogle Scholar
  15. 15.
    DNV GL—Energy (2014) Horizontal axis tidal turbines Renewables Certification—Wave and Tidal (pp. 284)Google Scholar
  16. 16.
    DNVGL (2015) Tidal turbines—Rules and standardsGoogle Scholar
  17. 17.
    Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32(4):659–669. CrossRefGoogle Scholar
  18. 18.
    Duan X, Yao WX (2002) Multi-directional stiffness degradation induced by matrix cracking in composite laminates. Int J Fatigue 24(2–4):119–125. CrossRefGoogle Scholar
  19. 19.
    Talreja R (2013) Continuum modeling of the development of intralaminar cracking in composite laminates. In: Paper presented at the ICF7, Houston (USA) 1989Google Scholar
  20. 20.
    McCann GN, Rawlinson-Smith RI, Argyriadis K (2006) Load simulation for tidal turbines using wind turbine experience. In: Paper presented at the ICOE’06, Bremerhaven, GermanyGoogle Scholar
  21. 21.
    Bahaj AS, Batten WMJ, McCann G (2007) Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew Energ 32(15):2479–2490. CrossRefGoogle Scholar
  22. 22.
    Batten W, Bahaj A, Molland A, Chaplin J, Group SER (2007) Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng 34(7):1013–1020CrossRefGoogle Scholar
  23. 23.
    Bahaj A, Molland A, Chaplin J, Batten W (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energ 32(3):407–426CrossRefGoogle Scholar
  24. 24.
    Kennedy CR, Leen SB, Brádaigh CMÓ (2012) A preliminary design methodology for fatigue life prediction of polymer composites for tidal turbine blades. Proc Instit Mech Eng, Part L: J Mater Design Appl, 1464420712443330Google Scholar
  25. 25.
    Jaksic V, Kennedy CR, Leen SB, Brádaigh CMÓ (2016, 21–22 March) Tidal turbine blade design from a composite fatigue point of view. In: Paper presented at the 5th oxford tidal energy workshop, Oxford, UKGoogle Scholar
  26. 26.
    Bryans AG, Fox B, Crossley PA, O’Malley M (2005) Impact of tidal generation on power system operation in Ireland. IEEE Trans Power Syst 20(4):2034–2040CrossRefGoogle Scholar
  27. 27.
    Pugh DT (1988) Tides, Surges, and Mean Sea-Level/a Handbook for Engineers and Scientists. WileyGoogle Scholar
  28. 28.
    Tidal Observations—Irish National Tide Gauge Network (2016) from Marine Institute
  29. 29.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2008) The prediction of the hydrodynamic performance of marine current turbines. Renew Energy 33(5):1085–1096. CrossRefGoogle Scholar
  30. 30.
    Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2006) Hydrodynamics of marine current turbines. Renew Energy 31(2):249–256. CrossRefGoogle Scholar
  31. 31.
    UIUC (2016) Airfoil Data Set. Illinois, USA: University of Illinois at Urbana–Champaign (UIUC), Applied Aerodynamics GroupGoogle Scholar
  32. 32.
    NREL (2012) PreComp: National laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Retrieved from
  33. 33.
    Segovia F, Salvador MD, Sahuquillo O, Vicente A (2007) Effects of long-term exposure on e-glass composite material subjected to stress corrosion in a saline medium. J Composite Mater 41(17):2119–2128. CrossRefGoogle Scholar
  34. 34.
    Bir GS (2006) User’s Guide to PreComp (Pre-Processor for Computing Composite Blade Properties). Colorado, USA: National Renewable Energy Laboratory (NREL)Google Scholar
  35. 35.
    Barltrop N, Varyani K, Grant A, Clelland D, Pham X (2006) Wave-current interactions in marine current turbines. Proc Institut Mech Eng, Part M: J Eng Marit Environ 220(4):195–203Google Scholar
  36. 36.
    Gamstedt EK, Sjögren BA (2002) An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates. Int J Fatigue 24(2–4):437–446. CrossRefGoogle Scholar
  37. 37.
    Kennedy CR, Brádaigh CMÓ, Leen SB (2013) A multiaxial fatigue damage model for fibre reinforced polymer composites. Composite Struct 106:201–210CrossRefGoogle Scholar
  38. 38.
    Purnell P, Cain J, Van Itterbeeck P, Lesko J (2008) Service life modelling of fibre composites: a unified approach. Composites Sci. Technol 68(15):3330–3336CrossRefGoogle Scholar
  39. 39.
    Davies P, Mazeas F, Casari P (2001) Seawater aging of glass reinforced composites: shear behaviour and damage modelling. J Compos Mater 35(15):1343–1372CrossRefGoogle Scholar
  40. 40.
    Narasimha Murthy HN, Sreejith M, Krishna M, Sharma SC, Sheshadri TS (2010) Seawater durability of epoxy/vinyl ester reinforced with glass/carbon composites. J Reinf Plast Compos 29(10):1491–1499. CrossRefGoogle Scholar
  41. 41.
    Whitby B, Ugalde-Loo CE (2014) Performance of pitch and stall regulated tidal stream turbines. IEEE Transa Sustain Energy 5(1):64–72. CrossRefGoogle Scholar
  42. 42.
    Carr R (July, 2010) [Tide height data. (personal communication)]Google Scholar
  43. 43.
    SIMULIA (2010) “Abaqus FEA” Dassault Systèmes. from
  44. 44.
    Crawford RJ (1998) Plastics engineering: Butterworth-HeinemannGoogle Scholar
  45. 45.
    Bertagnolio F, Sørensen NN, Johansen J, Fuglsang P (2001) Wind turbine airfoil catalogue. Riso National Laboratory, Roskilde, DenmarkGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vesna Jaksic
    • 1
  • Ciaran R. Kennedy
    • 2
  • David M. Grogan
    • 2
  • Sean B. Leen
    • 2
  • Conchúr M. Ó. Brádaigh
    • 3
  1. 1.Sustainable Infrastructure Research & Innovation Group (SIRIG), Civil, Structural and Environmental DepartmentCork Institute of TechnologyCorkIreland
  2. 2.Department of Mechanical EngineeringNational University of IrelandGalwayIreland
  3. 3.Institute for Materials and ProcessesUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations