Skip to main content

Management of Impurities in Cast House with Particular Reference to Ni and V

  • Chapter
  • 319 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

It is apparent that the concentrations of impurities in raw materials (particularly petroleum coke) are increasing with significant implications for the ability of cast houses to meet customer chemical specifications. A large fraction of the metal content (Ni, V) of the coke and alumina (Fe, Si, Ga, Zn) reports to the Al in the reduction cells. In some smelters the concentration of these impurities is beginning to exceed customer cast product specifications. These impurities can have detrimental effects in certain alloys. In order to formulate control strategies, this paper reviews process options including the classical melt treatment processes of salt fluxing, degassing and filtration for removing impurities in the cast shop. The mechanism of Al boride treatment to remove titanium, chromium, vanadium is examined to get a picture of the possibility of speeding up the process. Those processes used for producing super purity Al are also examined along with refining methods in other non-ferrous metals for potential application to Ni and V control. An investigation into potential for a melt nickel removal process is recapped. We conclude that currently cast house cannot provide a complete solution to the issue of Ni and V control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Grandfield and J. Taylor, The impact of rising Ni and V impurity levels in smelter grade aluminium and potential control strategies, Materials Science Forum, 630, 2009, 129–136.

    Article  Google Scholar 

  2. J. Grandfield et al., 10th Australasian Aluminium Smelting Technology Conference, B. Welch et al eds, 2011, UNSW, Australia.

    Google Scholar 

  3. Zhang et al., Mineral Processing and Extractive Metallurgy Review, 32(3), 2011, 150–228.

    Article  Google Scholar 

  4. P. Le Brun, “Melt Treatment - Evolution and Perspectives”, Light Metals 2008, TMS, 2008, 621–626.

    Google Scholar 

  5. J. Grandfield, “Ingot casting and cast house metallurgy of aluminium and its alloys”, in Fundamentals of Aluminium Metallurgy, R. Lumley ed., 2011, Woodhead Publishing, Oxford, 110–140.

    Google Scholar 

  6. T.A. Engh, Principles of Metal Refining, 1992, New York: Oxford University Press.

    Google Scholar 

  7. G. Gaustad, S. Das, R. Kirchain, “Identifying Scrap Friendly Alloys using Chance Constrained Modeling”, Light Metals 2007, TMS 2007, 1153–1159.

    Google Scholar 

  8. P. Waite, “A technical perspective on molten aluminum processing”, Light Metals 2002, TMS, 2002, 841–848.

    Google Scholar 

  9. T. Leinum, and B. Rasch, “Crucible fluxing of potroom metal in a Norsk hydro cast shop effect on dross reduction and increased metal recovery”, Light Metals 2001, TMS, 2001, 1049–1052.

    Google Scholar 

  10. T. Haugen et al, Materials Science Forum, 693, 2011, 44–53.

    Article  Google Scholar 

  11. H.H. Corner et al, Light Metals 2006, TMS, 2006, 765–770.

    Google Scholar 

  12. D. H. DeYoung, and R. Levesque, 9th Aluminium Casthhouse Technology 2005, Melbourne, J. Taylor et al Eds, CAST, pp.7–16.

    Google Scholar 

  13. B.L. Tiwari, “Demagging Processes for Aluminum Alloy Scrap”, JOM, vol 34(7), 1982,54–58.

    Article  Google Scholar 

  14. F. Barrera-Méndez et al, “Magnesium Removal from Molten Al-Si Alloys Using Zeolite”, Canadian Met. Quarterly, 49(2), 2010, 163–170.

    Article  Google Scholar 

  15. J. P. Martin et al, Light Metals 1988, TMS, 1988, 445–455.

    Google Scholar 

  16. G.G. Gauthier, “The conductivity of super-purity aluminium: The influence of small metallic additions”, J. Inst. Met., 59, 1936, 129–50.

    Google Scholar 

  17. A. Khaliq, M.A. Rhamdhani, G.A. Brooks and J. Grandfield, “Thermodynamic analysis of Ti, Zr, V, and Cr impurities in aluminium melt”, Light Metals 2011, TMS, 2011, 751–6.

    Google Scholar 

  18. A. Khaliq, M.A. Rhamdhani, J.B. Mitchell, C.J. Davidson, G.A. Brooks and J.F. Grandfield, “Analysis of Transition Metal (V,Zr) Borides Formation in Al Melt”, Proceedings of EMC 2011–Volume 3, EMC 2011, Dusseldorf, Germany, June 2011, 825–38.

    Google Scholar 

  19. L. J. Gauckler, et al., Journal of Metals, 37(9), 1985, 37(9), 47–50.

    Google Scholar 

  20. H. Duval, et al., “Pilot-scale investigation of liquid aluminium filtration through ceramic foam filters: comparison between coulter measurements and metallographic analysis of spent filters”, Metall. Mater. Trans. B, 40(2), 2009, 233–246.

    Article  Google Scholar 

  21. E. Lai et al., Light Metals 2006, TMS 2006, Ed. T. J. Galloway, TMS, 2006, 753–758.

    Google Scholar 

  22. L. Zhang et al., Light Metals 2008, Ed. D. De Young, TMS, 2008, 649–655

    Google Scholar 

  23. K. Hoshino et al., Light Metals 1996, TMS, 1996, 833–838.

    Google Scholar 

  24. A. Hane et al., Light Metals 1997, Ed. R. Huglen, TMS, 1997, 991–996.

    Google Scholar 

  25. G. Mabry et al., Light Metals 1997, Ed. R. Huglen, TMS, 1997, 983–989

    Google Scholar 

  26. G. Clement, Light Metals 1995, Ed. J. Evans, TMS, 1995, 1253–1262.

    Google Scholar 

  27. R.K. Dawless and S.C. Jacobs, Production of Extreme Purity Aluminum, US Patent: 4,222,830. 1980.

    Google Scholar 

  28. R.K. Dawless and S.C. Jacobs, Production of Extreme Purity Aluminum, US Patent: 4,239,606. 1980.

    Google Scholar 

  29. J.D. Edwards, F.C. Frary, and Z. Jeffries, The Aluminum Industry, Vol. I. Aluminum and Its Production. 1930, New York and London: McGraw-Hill.

    Google Scholar 

  30. W. Hoopes, F.C. Frary and J.D. Edwards, Electrolytic Production of Aluminum, US Patent: 1,534, 317, 1922.

    Google Scholar 

  31. Cie. Alais, French Patent No. 759588, Brit. Patent No. 405596, 1934.

    Google Scholar 

  32. H. Hurter, Brit. Patent No. 469,361, 1937.

    Google Scholar 

  33. G. Revel, “Aluminium De Haute Purete Obtenu Par Zone Fondue”, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 259(22), 1964, 4031.

    Google Scholar 

  34. H. Bratsberg, O.H. Herbjornsen and D. Foss, “Zone Refining of Aluminum”, Review of Scientific Instruments, 34(7), 1963, 777.

    Article  Google Scholar 

  35. T. Kino et al., “Zone-Refining of Aluminum”, Transactions of the Japan Institute of Metals, 17(10), 1976, 645–8.

    Article  Google Scholar 

  36. W.G. Pfann, “Principles of Zone-Melting”, Journal of Metals, 4(2), 1952, 151.

    Google Scholar 

  37. W.G. Pfann, CE. Miller, and J.D. Hunt, “New Zone Refining Techniques for Chemical Compounds”, Review of Scientific Instruments, 37(5), 1966, 649.

    Article  Google Scholar 

  38. A.L. Lux and M.C. Flemings, “Refining by Fractional Solidification”, Metallurgical Transactions B (Process Metallurgy), 10B, 1979, 71–8.

    Article  Google Scholar 

  39. E.F. Herington, “Zone Refining as a Purification Tool”, Annals of the New York Academy of Sciences, 137 (Purification of Materials), 1966,63–71.

    Article  Google Scholar 

  40. E. Hashimoto, Y. Ueda, and T. Kino, “Purification of Ultra-High Purity Aluminum”, Journal De Physique, 5(C7), 1995, 153–7.

    Google Scholar 

  41. Available from: http://www.mindfiesta.com/metallurgy, accessed 28 Sept 2012.

  42. N. Jarrett et al., Treatment of Molten Aluminum, US Patent: 3,211,547, 1965.

    Google Scholar 

  43. S.C. Jacobs, Purification of Aluminum, US Patent: 3,303,019, 1967.

    Google Scholar 

  44. R.K. Dawless and R.E. Graziano, Fractional Crystallization Process, US Patent: 4,294,612, 1981.

    Google Scholar 

  45. R.K. Dawless, “Production of Extreme-Purity Aluminum and Silicon by Fractional Crystallization Processing”, Journal of Crystal Growth, 89(1), 1988, 68–74.

    Article  Google Scholar 

  46. M.A. Rhamdhani, M.A. Dewan, J. Mitchell, C.J. Davidson, G.A. Brooks, M. Easton, J.F. Grandfield, “Study of Ni-Impurity Removal from Al Melt”, Light Metals 2012, 141st Annual TMS Meeting 2012, Mar 2012, Orlando, FL, 1091–7.

    Google Scholar 

  47. G.S. Foerster, Removal of Ni from Molten Magnesium Metal, in U. S. Patent: 3,869,281, 1975.

    Google Scholar 

  48. C.J. Simensen and P. Le Brun, Light Metals 2009, TMS, Warrendale, 2009, Ed. G. Bearne, 777–781.

    Google Scholar 

  49. D.B. George, Apparatus and process for the production of fired refined bister copper, US Patent: 276,549, 1995.

    Google Scholar 

  50. J. Vogt and P. Schmidt, Process for gaseous reduction of oxygen containing copper, US Patent, 1971.

    Google Scholar 

  51. T. Marin and T. Utigard, “The kinetics and mechanism of molten copper oxidation by top blowing of oxygen”, JOM, 57, 2005, 58–62.

    Article  Google Scholar 

  52. B. Friedrich, F. Toubartz, A. Arnold, “Cu-Pb-Me-S balances during lead refining”, Proceedings of EMC 2001, European Metallurgical Conference 2001, Germany, 295–317.

    Google Scholar 

  53. J.T. Michael, Refining of lead debismuthizing, US Patent: 189,125, 1989.

    Google Scholar 

  54. S.G. Hibbins et al., “Advances in the refining and alloying of low-bismuth lead”, Journal of Power Sources, 53, 1995, 75–83.

    Article  Google Scholar 

  55. D.K. Lu, Z.N. Jin and K.X. Jiang, “Fine debismuthizing with calcium, magnesium and antimony”, Transactions of Nonferrous Metals Society of China (English Edition), 21, 2011, 2311–2316.

    Article  Google Scholar 

  56. R.A. Thomas, Process for refining metals by drossing procedures, Australia Patent: 158131, 1982.

    Google Scholar 

  57. T. Yoshikawa, K. Arimura and K. Morita, “Boron removal by titanium addition in solidification refining of silicon with Si-Al melt”, Metall. Mater. Trans. B, 36B, 2005, 837–42.

    Article  Google Scholar 

  58. E. Olsen and S. Rolseth, “Three-Layer Electrorefining of Silicon”, Metall. Mater. Trans. B, 41, 2010, 295–302.

    Article  Google Scholar 

  59. N. Yuge et al., “Purification of metallurgical grade silicon up to solar grade”, Progress in Photovoltaics: Research and Applications, 9, 2001, 203–9.

    Article  Google Scholar 

  60. M.D. Johnston and M. Barati, “Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications”, Solar Energy Materials and Solar Cells, vol.94, 2010, 2085–90.

    Article  Google Scholar 

  61. M.S. Islam, M.A. Rhamdhani and G.A. Brooks, Proc. of High Temperature Processing Symposium 2012, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 6–7 Feb 2012, Melbourne, Australia, 24–25.

    Google Scholar 

  62. J.F. Grandfield and J.A. Taylor, “The downstream consequences of rising Ni and V concentrations in smelter Grade metal and potential control strategies”, Light Metals 2009, Ed. G. Bearne, TMS, 2009, 1007–1011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Barry A. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Rhamdhani, M.A., Grandfield, J.F., Khaliq, A., Brooks, G. (2016). Management of Impurities in Cast House with Particular Reference to Ni and V. In: Sadler, B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-65136-1_6

Download citation

Publish with us

Policies and ethics