Impacts of Impurities Introduced into the Aluminium Reduction Cell

  • J. B. Metson
  • D. S. Wong
  • J. H. Hung
  • M. P. Taylor
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Impurities enter the aluminium reduction process largely through raw materials and operational practices. The declining quality of petroleum cokes, and the steadily increasing efficiency in the capture and recycle of pot fumes, increases impurity burdens with consequent impacts on cell performance and metal quality. Aluminas are a key and quite variable impurity source, with little incentive for producers to drive purity improvements. Beyond metal quality, the critical impacts lie in pot operations where control, or even analysis, of bath chemistry becomes increasingly problematic. Impurities have measureable impacts on current efficiency, and on anode effects, driven by inability to efficiently dissolve alumina. Impurity reduction strategies have been driven by perceived problem elements, for example phosphorus, however these processes generally entail an unacceptable level of collateral alumina loss. It is clear that the alumina contributions to impurity burdens and electrolyte chemistry, are increasingly complex and impact on the way reduction cells are operated.

Keywords

Aluminium electrolysis Impurities Alumina solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hauglan E., Haarberg G. M.Thisted E. and Thonstad J. TMS Light Metals, 2001, J Anjier Ed. p.549–553 (2001).Google Scholar
  2. 2.
    Taberaux A.T. TMS Light Metals, W. Hale, Ed. p.319–326, (1996)Google Scholar
  3. 3.
    Goodes, CG. and S.H. Algie, TMS Light Metals: P Campbell Ed. p. 199–207. (1989)Google Scholar
  4. 4.
    Zhang, W., Liu X. McMaster P., and Taylor M. TMS Light Metals 1996: W. Hale Ed. p. 405–411. (1996)Google Scholar
  5. 5.
    Sparwald, V., Erzmetall, 26(11): p. 529–33. (1973).Google Scholar
  6. 6.
    Frankenfeldt, R.E. and U. Mannweiler, Erzmetall, 29(3): p. 130–133. (1976).Google Scholar
  7. 7.
    Thonstad, J., Nordmo F. and Roseth S. TMS Light Metals, 1978 2: p. 463–479. (1978)Google Scholar
  8. 8.
    Goodes, CG., PhD Thesis, University of Queensland. (1988).Google Scholar
  9. 9.
    Šimko, F. Danek V. and Stas M. Metallurgical and Materials Transactions A, 37(3): p. 731–738. (2006)CrossRefGoogle Scholar
  10. 10.
    Danek, V., et al., Ind. Eng. Chem. Res., 2004. 43(26): p. 8239–8243.CrossRefGoogle Scholar
  11. 11.
    Danek, V., et al. Eleventh International Aluminium Symposium. 2001. Trondheim-Bergen-Trondheim.Google Scholar
  12. 12.
    Cole D., Terrell M., Wood S. TMS Light Metals 1996. J. Evans Ed. p. 1996.Google Scholar
  13. 13.
    Liu, X. Clements I. and George S. Australasian Smelting Technology Workshop p.457, (1992).Google Scholar
  14. 14.
    Metson J B. Proceedings of the Ninth International Symposium on Light Metals Production. J. Thonstad Editor. p.259–264. (1997).Google Scholar
  15. 15.
    Kvande, H. JOM, p. 22–28, 1994.Google Scholar
  16. 16.
    Grjotheim, K., et al. Aluminium Electrolysis - Fundamentals of the Hall-Héroult Process, 2nd ed, Aluminium-Verlag, Düsseldorf, 1982.Google Scholar
  17. 17.
    Mannweiler U. Fischer W.K., Perruchoud R. TMS Light Metals 2009. G. Bearne Ed. p. 909–911 (2009).Google Scholar
  18. 18.
    Grandfield J.F. and Taylor J.A. TMS Light Metals. 2009. G. Bearne, Ed. p. 1007–1011 (2009)Google Scholar
  19. 19.
    Feng Niaxiang, Peng J., Wang, Y. Di Y., You J., Laio X. TMS Light Metals. 2012. C Suarez Ed. p. 563–568, (2012).Google Scholar
  20. 20.
    Skybakmoen, E., A. Solheim, and Å. Sterten. Metall. Mater. Trans. B., 28B, p.81–86, 1997.CrossRefGoogle Scholar
  21. 21.
    Fernandez, R., K. Grjotheim and T. Østvold. TMS Light Metals, 1985. p.501–506, (1985)Google Scholar
  22. 22.
    Frolov, A.V., Gusev A.O., Zaikov Y.P., Kharmov A.P. Shurov N.I. Tkacheva O.Y. Apisarov A.P and Kovrov V.A. TMS Light Metals, 2007. M. Sorlie Ed. p.571–576, (2007).Google Scholar
  23. 23.
    Solheim, A., Rolseth S., Skybakmoen E., Stoen L. Sterten A. and Store T. Metall. Mater. Trans. B., 27B, 739–744, (1996).CrossRefGoogle Scholar
  24. 24.
    Li, W., Zhao Q., Yang J., Qiu S., and Chen X. TMS Light Metals. 2011. S. Lindsay Ed. p.309–314, (2011).Google Scholar
  25. 25.
    Marks, J. and C. Bayliss. TMS Light Metals, 2012, C. Suarez Ed. p.805–808, (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • J. B. Metson
    • 1
    • 2
    • 3
  • D. S. Wong
    • 1
  • J. H. Hung
    • 1
  • M. P. Taylor
    • 1
    • 4
  1. 1.Light Metals Research CentreThe University of AucklandAuckland 1142New Zealand
  2. 2.School of Chemical SciencesThe University of AucklandAuckland 1142New Zealand
  3. 3.MacDiarmid Institute for Advanced Materials and NanotechnologyThe University of AucklandAuckland 1142New Zealand
  4. 4.Department of Chemical and Materials EngineeringThe University of AucklandAuckland 1142New Zealand

Personalised recommendations