Light Metals 2013 pp 1045-1050 | Cite as

Review of Different Techniques to Study the Interactions Between Coke and Pitch in Anode Manufacturing

  • Duygu Kocaefe
  • Arunima Sarkar
  • Shipan Das
  • Salah Amrani
  • Dipankar Bhattacharyay
  • Dilip Sarkar
  • Yasar Kocaefe
  • Brigitte Morais
  • Marc Gagnon
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The quality of carbon anodes, consumed in electrolysis during the primary aluminum production, has an important impact on the electrolytic cell performance. Coke and pitch are the raw materials used in anode manufacturing. The raw material properties and the process parameters during production determine the anode quality. A plant receives these materials from different sources, and the variability in their properties is usually a major concern during anode production. The interaction between coke and pitch influences strongly the anode properties. Study of coke and pitch individually as well as the interactions between them using different techniques (spectroscopic, optical, etc.) such as XRD, FTIR, XPS, and SEM help identify their compatibility. Each technique gives information on different aspects of the raw materials. In this article, the use of a number of these techniques for studying coke, pitch, and their interactions will be discussed. Results will be presented for a number of cases.


Coke Pitch Image Analysis Optical Microscopy SEM XRD XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Berezin, P.V. Polaykov, O. O. Rodnov, VA. Klykov, V.L. Krylov, “Improvement of green anodes quality on the basis of the neural network model of the carbon plant workshop”, Light Metals, (2002), 605–608.Google Scholar
  2. 2.
    R. Fernandez, “Petroleum coke, grades and production”, CarboMat seminar Trondheim, (2003).Google Scholar
  3. 3.
    N.A Adams, “Characterization on pitch wetting and penetration behaviour of petroleum coke and recycled butts in prebake carbon anode”, (Ph.D thesis, The Pennsylvania State University, University Park, 2004).Google Scholar
  4. 4.
    M. J. Chollier-Brym, A. Gagnon, C. Boulanger, D. Lepage, G. Savard, G. Bouchard, C. Lagacé, A. Charette, “Anode Reactivity: Effect of Anode Calcination Level”, Light Metals, (2009), 905–908.Google Scholar
  5. 5.
    A. A. Mirchi, G. Savard, J.P. Tremblay, M. Simard, “Alcan characterisation of pitch performance for pitch binder evaluation and process changes in an aluminium smelter”, Light metals, (2002), 525–534.Google Scholar
  6. 6.
    J. Lahaye, P. Ehrburger, “Pitch-coke interactions”, Fuel, 64 (9) (1985), 1187–1191.CrossRefGoogle Scholar
  7. 7.
    P. Couderc, P. Hyvernat, J. Lemarchand, “Correlations between ability of pitch to penetrate coke and the physical characteristics of prebaked anodes for the aluminium industry”, Fuel, 65 (2) (1986), 281–287.CrossRefGoogle Scholar
  8. 8.
    V. G. Rocha, C. Blanco, R. Santamaria, E.I. Diestre, R. Menedez, M. Granda, “Pitch/coke wetting behaviour”, Fuel, 84(2005), 1550–1556.CrossRefGoogle Scholar
  9. 9.
    V.G. Rocha, C. Blanco, R. Santamaria, E.I. Diestre, R. Menendez, M. Granda, “An insight into pitch/substrate wetting behaviour. The effect of the substrate processing temperature on pitch wetting capacity”, Fuel, 86 (7–8) (2007), 1046–1052.CrossRefGoogle Scholar
  10. 10.
    V.G. Rocha, C. Blanco, R. Santamaria, E.I. Diestre, R. Menendez, M. Granda, “The effect of the substrate on pitch wetting behaviour”, Fuel Processing Technology, 91 (11) (2010), 1373–1377.CrossRefGoogle Scholar
  11. 11.
    U. Suriyapraphadilok, “Characterization of Coal- and Petroleum-derived Binder Pitches and the Interaction of Pitch/coke Mixtures in Pre-baked Carbon Anodes”, (Ph.D. thesis, Pennsylvania state university, 2008).Google Scholar
  12. 12.
    G. L. Qiao, S. Eser, “Automated Digital Image Analysis of Semi-coke Texture”, 23rd Biennial Conference on Carbon, University Park, Pennsylvania, (1997).Google Scholar
  13. 13.
    S. C. Greeff, W.H. Smith, “Automated coke petrography”, APCOM 87, Proceedings of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries, Metallurgy. Johannesburg, 2 (1987), 253–262.Google Scholar
  14. 14.
    S. Rørvik, H.A. Øye, M. Sørlie, “Characterization of Porosity in Cokes by Image Analysis”, Light Metals, (2001), 603–612.Google Scholar
  15. 15.
    R. Bowers, S. Ningileri, D. C. Palmlund, B. Vitchus, F. Cannova, “New Analytical Methods to Determine Calcined Coke Porosity, Shape, and Size”, Light Metals, (2008), 875–880.Google Scholar
  16. 16.
    A. N. Adams, J. P. Mathews, H. H. Schobert, “The Use of Image Analysis for the Optimization of Pre-baked Anode Formulation”, Light Metals, (2002), 545–552.Google Scholar
  17. 17.
    S. Rørvik, A. P. Ratvik, T. Foosnæs, “Characterization of Green Anode Materials by Image Analysis”, Light Metals, (2006), 553–558.Google Scholar
  18. 18.
    B. A. Sadler, “Diagnosing Anode Quality Problems Using Optical Microscopy”, Light Metals, (2012), 1289–1292.Google Scholar
  19. 19.
    H. Estrade-Szwarckopf, “XPS Photoemission in Carbonaceous Materials: A ‘Defect’ Peak Beside the Graphitic Asymmetric Peak”, Carbon, 42 (2004), 1713–1721.CrossRefGoogle Scholar
  20. 20.
    T. Metzinger, K. J. Huttinger, “Investigations on the Cross-linking of Binder Pitch Matrix of Carbon Bodies with Molecular Oxygen – Part I. Chemistry of Reactions Between Pitch and Oxygen”, Carbon, 35 (7) (1997), 885–892.CrossRefGoogle Scholar
  21. 21.
    J. A. Menéndez, J. J. Pis, R. Alvarez, C. Barriocanal, E. Fuente, and M. A. Díez, “Characterization of Petroleum Coke as an Additive in Metallurgical Cokemaking. Modification of Thermoplastic Properties of Coal”, Energy & Fuels, 10 (1996), 1262–1268.CrossRefGoogle Scholar
  22. 22.
    M. D. Guillén, M. J. Iglesias, A. Dominguez, C. G. Blanco, “Semiquantitative FTIR Analysis of a Coal Tar Pitch and Its Extracts and Residues in Several Organic Solvents,” Energy & Fuels, 6(1992)518–525.CrossRefGoogle Scholar
  23. 23.
    D. Kocaefe, G. Ergin, G., Y. Kocaefe, “Determining the Wettability of Granular Alumina by Aluminum-Magnesium Alloys Using the Infiltration Method”, (2008), Surface and Interface Analysis, 40 (12), 1516–1522.CrossRefGoogle Scholar
  24. 24.
    A. N. Adams, O. Karacan, A. Grader, J.P. Mathews, P.M. Halleck, H.H. Schobert, “The Non-Destructive 3-D Characterization of Pre-Baked Carbon Anodes Using X-Ray Computerized Tomography”, Light Metals, (2002), 535–539.Google Scholar
  25. 25.
    D. Picard, H. Alamdari, D. Ziegler, P-O. St-Arnaud, M. Fafard. “Characterization of a Full-Scale Prebaked Carbon Anode Using X-Ray Computerized Tomography”. Light Metals, (2011), 973–978.Google Scholar
  26. 26.
    D. Belitskus, D.J. Danka, “A Comprehensive Determination of Effects of Calcined Petroleum Coke Properties on Aluminum Reduction Cell Anode Properties”, Light Metals, (1989), 429–442.Google Scholar
  27. 27.
    E. A. Heintz, “Wetting of Filler by Binder — a Simple Apparatus for Determining Wetting Temperatures”, Carbon, 24(1986), 131–134.CrossRefGoogle Scholar
  28. 28.
    K.L. Hulse, “Anode Manufacture: Raw Materials, Formulation and Processing Parameters”, (Sierre, Switzerland, R&D Carbon, 2000), 101–102.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Duygu Kocaefe
    • 1
  • Arunima Sarkar
    • 1
  • Shipan Das
    • 1
  • Salah Amrani
    • 1
  • Dipankar Bhattacharyay
    • 1
  • Dilip Sarkar
    • 1
  • Yasar Kocaefe
    • 1
  • Brigitte Morais
    • 2
  • Marc Gagnon
    • 2
  1. 1.Centre universitaire de recherche sur l’aluminium (CURAL)University of Quebec at ChicoutimiChicoutimiCanada
  2. 2.Aluminerie Alouette inc.Sept-ÎlesCanada

Personalised recommendations