Advertisement

Biopsychological Aspects of Motivation

  • Oliver C. Schultheiss
  • Michelle M. Wirth
Chapter

Abstract

This chapter provides an overview of biological approaches to motivational psychology. These approaches see the affective evaluation of stimuli as the foundation of motivation and locate this process as well as its outcomes in specific areas of the brain (amygdala, striatum, orbitofrontal cortex, hypothalamus). They also discuss the role of neurotransmitters and hormones. This chapter presents general principles and mechanisms of motivational processes and their delineation from other forms of behavioral regulation as well as a few specific motivational systems (eating, social affiliation, dominance, sexuality).

References

  1. Adolphs, R., & Tranel, D. (2000). Emotion recognition and the human amygdala. In J. P. Aggleton (Ed.), The amygdala. A functional analysis (pp. 587–630). New York: Oxford University Press.Google Scholar
  2. Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537–551.PubMedPubMedCentralGoogle Scholar
  3. Albert, D. J., Jonik, R. H., & Walsh, M. L. (1992). Hormone-dependent aggression in male and female rats: Experiential, hormonal, and neural foundations. Neuroscience and Biobehavioral Reviews, 16, 177–192.PubMedPubMedCentralGoogle Scholar
  4. Albert, D. J., Petrovic, D. M., Walsh, M. L., & Jonik, R. H. (1989). Medial accumbens lesions attenuate testosterone-dependent aggression in male rats. Physiology & Behavior, 46, 625–631.Google Scholar
  5. Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359–372.Google Scholar
  6. Atkinson, J. W. (1981). Studying personality in the context of an advanced motivational psychology. American Psychologist, 36, 117–128.Google Scholar
  7. Atkinson, J. W., & Birch, D. (1970). The dynamics of action. New York: Wiley.Google Scholar
  8. Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161–8165.PubMedPubMedCentralGoogle Scholar
  9. Bartels, A., & Zeki, S. (2000). The neural basis of romantic love. Neuroreport, 11, 3829–3834.PubMedPubMedCentralGoogle Scholar
  10. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166.CrossRefGoogle Scholar
  11. Baum, M. J. (1992). Neuroendocrinology of sexual behavior in the male. In J. B. Becker, S. M. Breedlove, & D. Crews (Eds.), Behavioral endocrinology (pp. 97–130). Cambridge, MA: MIT.Google Scholar
  12. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.PubMedPubMedCentralGoogle Scholar
  13. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.PubMedPubMedCentralGoogle Scholar
  14. Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1–25.PubMedPubMedCentralGoogle Scholar
  15. Berridge, K. C. (2001). Reward learning: Reinforcement, incentives and expectations. In D. L. Medin (Ed.), The psychology of learning and motivation (Vol. Bd. 40, pp. 223–278). New York: Academic.Google Scholar
  16. Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646–664.PubMedPubMedCentralGoogle Scholar
  17. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.PubMedPubMedCentralGoogle Scholar
  18. Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507–513.CrossRefGoogle Scholar
  19. Billington, C. J., & Levine, A. S. (1992). Hypothalamic neuropeptide Y regulation of feeding and energy metabolism. Current Opinion in Neurobiology, 2, 847–851.PubMedPubMedCentralGoogle Scholar
  20. Bindra, D. (1978). How adaptive behavior is produced: A perceptual-motivational alternative to response-reinforcement. Behavioral and Brain Sciences, 1, 41–91.Google Scholar
  21. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 11818–11823.CrossRefGoogle Scholar
  22. Brewin, C. R., Dalgleish, T., & Joseph, S. (1996). A dual representation theory of posttraumatic stress disorder. Psychological Review, 103, 670–686.PubMedPubMedCentralGoogle Scholar
  23. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815–834.PubMedPubMedCentralGoogle Scholar
  24. Cabanac, M. (1971). Physiological role of pleasure. Science, 173, 1103–1107.PubMedPubMedCentralGoogle Scholar
  25. Cabanac, M. (1992). Pleasure: The common currency. Journal of Theoretical Biology, 155, 173–200.PubMedPubMedCentralGoogle Scholar
  26. Cabanac, M. (2014). The fifth influence. Or, the dialectics of pleasure (2nd ed.). Green Bay, WI: BookWhirl.Google Scholar
  27. Cahill, L. (2000). Modulation of long-term memory in humans by emotional arousal: Adrenergic activation and the amygdala. In J. P. Aggleton (Ed.), The amygdala. A functional analysis (pp. 425–446). New York: Oxford University Press.Google Scholar
  28. Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26, 321–352.Google Scholar
  29. Carroll, L., Voisey, J., & van Daal, A. (2004). Mouse models of obesity. Clinics in Dermatology, 22, 345–349.CrossRefGoogle Scholar
  30. Carver, C. S., & Scheier, M. F. (1998). On the self-regulation of behavior. New York: Cambridge University Press.Google Scholar
  31. Corr, P. J., Pickering, A. D., & Gray, J. A. (1997). Personality, punishment, and procedural learning: A test of J.A. Gray’s anxiety theory. Journal of Personality and Social Psychology, 73, 337–344.PubMedPubMedCentralGoogle Scholar
  32. Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.CrossRefGoogle Scholar
  33. Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin of Woods Hole, 34, 91–107.Google Scholar
  34. Dabbs, J. M., Frady, R. L., Carr, T. S., & Besch, N. F. (1987). Saliva testosterone and criminal violence in young adult prison inmates. Psychosomatic Medicine, 49, 174–182.PubMedPubMedCentralGoogle Scholar
  35. Dabbs, J. M., & Hargrove, M. F. (1997). Age, testosterone, and behavior among female prison inmates. Psychosomatic Medicine, 59, 477–480.PubMedPubMedCentralGoogle Scholar
  36. Damasio, A. R. (1994). Descartes’ error. Emotion, reason, and the human brain. London: Papermac.Google Scholar
  37. Darwin, C. (1871). The descent of man, and selection in relation to sex. New York: Appleton.Google Scholar
  38. de Araujo, I. E., Kringelbach, M. L., Rolls, E. T., & Hobden, P. (2003). Representation of umami taste in the human brain. Journal of Neurophysiology, 90, 313–319.CrossRefGoogle Scholar
  39. Delville, Y., DeVries, G. J., & Ferris, C. F. (2000). Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain, Behavior and Evolution, 55, 53–76.PubMedPubMedCentralGoogle Scholar
  40. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–569.PubMedPubMedCentralGoogle Scholar
  41. Depue, R. A., Luciana, M., Arbisi, P., Collins, P., & Leon, A. (1994). Dopamine and the structure of personality: Relation of agonist-induced dopamine activity to positive emotionality. Journal of Personality and Social Psychology, 67, 485–498.PubMedPubMedCentralGoogle Scholar
  42. Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. The Behavioral and Brain Sciences, 28, 313–350. discussion 350–395.PubMedGoogle Scholar
  43. Domjan, M., Blesbois, E., & Williams, J. (1998). The adaptive significance of sexual conditioning: Pavlovian control of sperm release. Psychological Science, 9, 411–415.Google Scholar
  44. Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463, 356–359.PubMedPubMedCentralGoogle Scholar
  45. Epstein, L. H., Truesdale, R., Wojcik, A., Paluch, R. A., & Raynor, H. A. (2003). Effects of deprivation on hedonics and reinforcing value of food. Physiology and Behavior, 78, 221–227.PubMedPubMedCentralGoogle Scholar
  46. Everitt, B. J. (1990). Sexual motivation: A neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neuroscience and Biobehavioral Reviews, 14, 217–232.PubMedPubMedCentralGoogle Scholar
  47. Eysenck, H. J. (1967). The biological basis of personality. Springfield, Ill: Thomas.Google Scholar
  48. Fleming, A. S., Corter, C., Franks, P., Surbey, M., Schneider, B., & Steiner, M. (1993). Postpartum factors related to mother’s attraction to newborn infant odors. Developmental Psychobiology, 26, 115–132.PubMedPubMedCentralGoogle Scholar
  49. Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.PubMedPubMedCentralGoogle Scholar
  50. Fuster, J. M. (2001). The prefrontal cortex – an update: Time is of the essence. Neuron, 30, 319–333.Google Scholar
  51. Gianotti, M., Roca, P., & Palou, A. (1988). Body weight and tissue composition in rats made obese by a cafeteria diet. Effect of 24 hours starvation. Hormone and Metabolic Research, 20, 208–212.CrossRefGoogle Scholar
  52. Graham, J. M., & Desjardins, C. (1980). Classical conditioning: Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science, 210, 1039–1041.Google Scholar
  53. Gray, J. A. (1971). The psychology of fear and stress. New York: McGraw-Hill.Google Scholar
  54. Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In H. J. Eysenck (Ed.), A model for personality (pp. 246–276). Heidelberg, Germany: Springer.Google Scholar
  55. Gray, P. B., Chapman, J. F., Burnham, T. C., McIntyre, M. H., Lipson, S. F., & Ellison, P. T. (2004). Human male pair bonding and testosterone. Human Nature, 15, 119–131.CrossRefGoogle Scholar
  56. Greenough, A., Cole, G., Lewis, J., Lockton, A., & Blundell, J. (1998). Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiology and Behavior, 65, 303–310.PubMedPubMedCentralGoogle Scholar
  57. Hall, J. L., Stanton, S. J., & Schultheiss, O. C. (2010). Biopsychological and neural processes of implicit motivation. In O. C. Schultheiss & J. C. Brunstein (Eds.), Implicit motives (pp. 279–307). New York: Oxford University Press.Google Scholar
  58. Harlow, H., & Harlow, M. H. (1966). Learning to love. American Scientist, 54, 244–272.PubMedPubMedCentralGoogle Scholar
  59. Hepper, P. G. (1994). Long-term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33, 3–14.PubMedPubMedCentralGoogle Scholar
  60. Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41.PubMedPubMedCentralGoogle Scholar
  61. Insel, T. R. (1997). A neurobiological basis of social attachment. The American Journal of Psychiatry, 154, 726–735.CrossRefGoogle Scholar
  62. Insel, T. R., Winslow, J. T., Wang, Z., & Young, L. J. (1998). Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation. Advances in Experimental Medicine and Biology, 449, 215–224.CrossRefGoogle Scholar
  63. Irani, B. G., & Haskell-Luevano, C. (2005). Feeding effects of melanocortin ligands – a historical perspective. Peptides, 26, 1788–1799.Google Scholar
  64. Kendrick, K. M. (2004). The neurobiology of social bonds. Journal of Neuroendocrinology, 16, 1007–1008.Google Scholar
  65. Keverne, E. B., & Curley, J. P. (2004). Vasopressin, oxytocin and social behaviour. Current Opinion in Neurobiology, 14, 777–783.Google Scholar
  66. Keverne, E. B., & Kendrick, K. M. (1994). Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatrica. Supplement, 397, 47–56.CrossRefGoogle Scholar
  67. Keverne, E. B., Martensz, N. D., & Tuite, B. (1989). Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology, 14, 155–161.Google Scholar
  68. Killcross, S., Robbins, T. W., & Everitt, B. J. (1997). Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature, 388, 377–380.Google Scholar
  69. Klüver, H., & Bucy, P. C. (1937). “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, 119, 352–353.Google Scholar
  70. Klüver, H., & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 42, 979–1000.Google Scholar
  71. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.PubMedPubMedCentralGoogle Scholar
  72. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.PubMedPubMedCentralGoogle Scholar
  73. Kohls, G., Perino, M. T., Taylor, J. M., Madva, E. N., Cayless, S. J., Troiani, V., … Schultz, R. T. (2013). The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment. Neuropsychologia, 51(11), 2062-2069. doi: S0028-3932(13)00249-2 [pii] 10.1016/j.neuropsychologia.2013.07.020Google Scholar
  74. Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691–702.CrossRefGoogle Scholar
  75. LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle Scholar
  76. LeDoux, J. E. (1996). The emotional brain. New York: Simon & Schuster.Google Scholar
  77. LeDoux, J. E. (2002). The synaptic self. New York: Viking.Google Scholar
  78. LeVay, S., & Hamer, D. H. (1994). Evidence for a biological influence in male homosexuality. Scientific American, 270, 44–49.PubMedPubMedCentralGoogle Scholar
  79. Levine, A. S., & Billington, C. J. (1997). Why do we eat? A neural systems approach. Annual Review of Nutrition, 17, 597–619.CrossRefGoogle Scholar
  80. Levine, A. S., & Billington, C. J. (2004). Opioids as agents of reward-related feeding: A consideration of the evidence. Physiology and Behavior, 82, 57–61.PubMedPubMedCentralGoogle Scholar
  81. Levine, A. S., Kotz, C. M., & Gosnell, B. A. (2003). Sugars and fats: The neurobiology of preference. Journal of Nutrition, 133, 831S–834S.PubMedPubMedCentralGoogle Scholar
  82. Lieberman, M. D. (2003). Reflective and reflexive judgment processes: A social cognitive neuroscience approach. In J. P. Forgas, K. R. Williams, & W. v. Hippel (Eds.), Social judgments: Implicit and explicit processes (pp. 44–67). New York: Cambridge University Press.Google Scholar
  83. Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychological Science, 18, 421–428.PubMedPubMedCentralGoogle Scholar
  84. Luria, A. R. (1973). The working brain. And introduction to neuropsychology. New York: Basic Books.Google Scholar
  85. Luria, A. R., & Homskaya, E. D. (1964). Disturbances in the regulative role of speech with frontal lobe lesions. In J. M. Akert & K. Warren (Eds.), The frontal granular cortex and behavior (pp. 353–371). New York: McGraw-Hill.Google Scholar
  86. Mann, P. E., & Bridges, R. S. (2001). Lactogenic hormone regulation of maternal behavior. Progress in Brain Research, 133, 251–262.CrossRefGoogle Scholar
  87. Martinez, J. A. (2000). Body-weight regulation: Causes of obesity. The Proceedings of the Nutrition Society, 59, 337–345.CrossRefGoogle Scholar
  88. Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459, 837–841.PubMedPubMedCentralGoogle Scholar
  89. Matsuzawa, T. (2003). The Ai project: Historical and ecological contexts. Animal Cognition, 6, 199–211.CrossRefGoogle Scholar
  90. Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583–626.Google Scholar
  91. Mazur, A. (1985). A biosocial model of status in face-to-face primate groups. Social Forces, 64, 377–402.Google Scholar
  92. Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21, 353–397.PubMedPubMedCentralGoogle Scholar
  93. McClelland, D. C. (1987). Human motivation. New York: Cambridge University Press.Google Scholar
  94. Morris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467–470.PubMedPubMedCentralGoogle Scholar
  95. Mowrer, O. H. (1960). Learning theory and behavior. New York: Wiley.Google Scholar
  96. Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11, 489–497.PubMedPubMedCentralGoogle Scholar
  97. Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience and Biobehavioral Reviews, 22, 437–452.PubMedPubMedCentralGoogle Scholar
  98. Nelson, R. J. (2011). An introduction to behavioral endocrinology (4th ed.). Sunderland, MA: Sinauer.Google Scholar
  99. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.PubMedPubMedCentralGoogle Scholar
  100. O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., & McGlone, F. (2001). Representation of pleasant and aversive taste in the human brain. Journal of Neurophysiology, 85, 1315–1321.PubMedPubMedCentralGoogle Scholar
  101. Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.PubMedPubMedCentralGoogle Scholar
  102. Oyegbile, T. O., & Marler, C. A. (2005). Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Hormones and Behavior, 48, 259–267.PubMedPubMedCentralGoogle Scholar
  103. Packard, M. G., Cornell, A. H., & Alexander, G. M. (1997). Rewarding affective properties of intra-nucleus accumbens injections of testosterone. Behavioral Neuroscience, 111, 219–224.PubMedPubMedCentralGoogle Scholar
  104. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
  105. Panksepp, J. (2006). Emotional endophenotypes in evolutionary psychiatry. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 774–784.CrossRefGoogle Scholar
  106. Panksepp, J., & Biven, L. (2012). The archaeology of mind. Neuroevolutionary origins of human emotions. New York: Norton.Google Scholar
  107. Pfaus, J. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1995). Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Research, 693, 21–30.PubMedPubMedCentralGoogle Scholar
  108. Porter, R. H. (1998). Olfaction and human kin recognition. Genetica, 104, 259–263.PubMedPubMedCentralGoogle Scholar
  109. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  110. Robinson, S., Rainwater, A. J., Hnasko, T. S., & Palmiter, R. D. (2007). Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology, 191, 567–578.CrossRefGoogle Scholar
  111. Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive– sensitization view. Addiction, 95(Suppl 2), S91–117.PubMedGoogle Scholar
  112. Rolls, E. T. (1999). The brain and emotion. Oxford, UK: Oxford University Press.Google Scholar
  113. Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.PubMedPubMedCentralGoogle Scholar
  114. Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 11–29.PubMedPubMedCentralGoogle Scholar
  115. Rolls, E. T. (2005a). Emotion explained. Oxford, UK: Oxford University Press.Google Scholar
  116. Rolls, E. T. (2005b). Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiology and Behavior, 85, 45–56.PubMedPubMedCentralGoogle Scholar
  117. Roney, J. R., Lukaszewski, A. W., & Simmons, Z. L. (2007). Rapid endocrine responses of young men to social interactions with young women. Hormones and Behavior, 52, 326–333.PubMedPubMedCentralGoogle Scholar
  118. Sapolsky, R. M. (1987). Stress, social status, and reproductive physiology in free-living baboons. In D. Crews (Ed.), Psychobiology and reproductive behavior: An evolutionary perspective (pp. 291–322). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  119. Schneirla, T. C. (1959). An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. In M. R. Jones (Ed.), Nebraska symposium on motivation (Vol. Bd. 7, pp. 1–42). Lincoln, NE: University of Nebraska Press.Google Scholar
  120. Schultheiss, O. C. (2007). A biobehavioral model of implicit power motivation arousal, reward and frustration. In E. Harmon-Jones & P. Winkielman (Eds.), Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 176–196). New York: Guilford.Google Scholar
  121. Schultheiss, O. C. (2008). Implicit motives. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research (3rd ed., pp. 603–633). New York: Guilford.Google Scholar
  122. Schultheiss, O. C. (2013). The hormonal correlates of implicit motives. Social and Personality Psychology Compass, 7, 52–65.Google Scholar
  123. Schultheiss, O. C., & Brunstein, J. C. (2001). Assessing implicit motives with a research version of the TAT: Picture profiles, gender differences, and relations to other personality measures. Journal of Personality Assessment, 77, 71–86.PubMedPubMedCentralGoogle Scholar
  124. Schultheiss, O. C., & Köllner, M. (2014). Implicit motives and the development of competencies: A virtuous-circle model of motive-driven learning. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 73–95). New York: Taylor & Francis/Routledge.Google Scholar
  125. Schultheiss, O. C., Pang, J. S., Torges, C. M., Wirth, M. M., & Treynor, W. (2005). Perceived facial expressions of emotion as motivational incentives: Evidence from a differential implicit learning paradigm. Emotion, 5, 41–54.CrossRefGoogle Scholar
  126. Schultheiss, O. C., Wirth, M. M., Torges, C. M., Pang, J. S., Villacorta, M. A., & Welsh, K. M. (2005). Effects of implicit power motivation on men’s and women’s implicit learning and testosterone changes after social victory or defeat. Journal of Personality and Social Psychology, 88, 174–188.PubMedPubMedCentralGoogle Scholar
  127. Schultheiss, O. C., Wirth, M. M., Waugh, C. E., Stanton, S. J., Meier, E., & Reuter-Lorenz, P. (2008). Exploring the motivational brain: Effects of implicit power motivation on brain activation in response to facial expressions of emotion. Social Cognitive and Affective Neuroscience, 3, 333–343.PubMedPubMedCentralGoogle Scholar
  128. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedPubMedCentralGoogle Scholar
  129. Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406–428.Google Scholar
  130. Solomon, R. L., & Wynne, L. C. (1953). Traumatic avoidance learning: Acquisition in normal dogs. Psychological Monographs, 67.CrossRefGoogle Scholar
  131. Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93, 13515–13522.CrossRefGoogle Scholar
  132. Stanton, S. J., Beehner, J. C., Saini, E. K., Kuhn, C. M., & Labar, K. S. (2009). Dominance, politics, and physiology: Voters’ testosterone changes on the night of the 2008 United States presidential election. PloS One, 4, e7543.CrossRefGoogle Scholar
  133. Stanton, S. J., & Schultheiss, O. C. (2009). The hormonal correlates of implicit power motivation. Journal of Research in Personality, 43, 942–949.PubMedPubMedCentralGoogle Scholar
  134. Stricker, E. M., & Verbalis, J. G. (2002). Hormones and ingestive behaviors. In J. B. Becker, S. M. Breedlove, & D. Crews (Eds.), Behavioral endocrinology (2nd ed., pp. 451–473). Cambridge MA: MIT.Google Scholar
  135. Stutz, A. M., Morrison, C. D., & Argyropoulos, G. (2005). The Agouti-related protein and its role in energy homeostasis. Peptides, 26, 1771–1781.Google Scholar
  136. Sullivan, R. M., Wilson, D. A., Wong, R., Correa, A., & Leon, M. (1990). Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Brain Research. Developmental Brain Research, 53, 243–247.CrossRefGoogle Scholar
  137. Swithers, S. E., & Martinson, F. A. (1998). Habituation of oral responding in adult rats. Behavioral Neuroscience, 112, 213–224.Google Scholar
  138. Taira, K., & Rolls, E. T. (1996). Receiving grooming as a reinforcer for the monkey. Physiology and Behavior, 59, 1189–1192.PubMedPubMedCentralGoogle Scholar
  139. Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411–429.PubMedPubMedCentralGoogle Scholar
  140. Thorndike, E. L. (1927). The law of effect. The American Journal of Psychology, 39, 212–222.Google Scholar
  141. Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press.Google Scholar
  142. Tucker, D. M., & Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 185–215.PubMedPubMedCentralGoogle Scholar
  143. Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23, 819–835.PubMedPubMedCentralGoogle Scholar
  144. van der Westhuizen, D., & Solms, M. (2015). Basic emotional foundations of social dominance in relation to Panksepp’s affective taxonomy. Neuropsychoanalysis, 17, 19–37.CrossRefGoogle Scholar
  145. Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7, 1271–1278.  https://doi.org/10.1038/nn1341 CrossRefGoogle Scholar
  146. Wallen, K. (2001). Sex and context: Hormones and primate sexual motivation. Hormones and Behavior, 40, 339–357.Google Scholar
  147. Wassum, K. M., & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 57, 271–283.PubMedPubMedCentralGoogle Scholar
  148. Westergaard, G. C., Suomi, S. J., Higley, J. D., & Mehlman, P. T. (1999). CSF 5–HIAA and aggression in female macaque monkeys: Species and interindividual differences. Psychopharmacology, 146, 440–446.CrossRefGoogle Scholar
  149. Wiemers, U. S., Schultheiss, O. C., & Wolf, O. T. (2015). Public speaking in front of an unreceptive audience increases implicit power motivation and its endocrine arousal signature. Hormones and Behavior, 71, 69–74.PubMedPubMedCentralGoogle Scholar
  150. Wilson, E. O. (1980). Sociobiology: The abridged edition. Cambridge, MA: Belknap/Harvard.Google Scholar
  151. Wingfield, J. C., Hegner, R. E., Dufty, A. M., & Ball, G. F. (1990). The “Challenge Hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136, 829–846.Google Scholar
  152. Winslow, J. T., & Insel, T. R. (2002). The social deficits of the oxytocin knockout mouse. Neuropeptides, 36, 221–229.Google Scholar
  153. Wirth, M. M., Welsh, K. M., & Schultheiss, O. C. (2006). Salivary cortisol changes in humans after winning or losing a dominance contest depend on implicit power motivation. Hormones and Behavior, 49, 346–352.PubMedPubMedCentralGoogle Scholar
  154. Woodson, J. C. (2002). Including ‘learned sexuality’ in the organization of sexual behavior. Neuroscience & Biobehavioral Reviews, 26, 69–80.Google Scholar
  155. Wynne-Edwards, K. E. (2001). Hormonal changes in mammalian fathers. Hormones and Behavior, 40, 139–145.PubMedPubMedCentralGoogle Scholar
  156. Yamaguchi, S., & Ninomiya, K. (2000). Umami and food palatability. Journal of Nutrition, 130, 921S–926S.PubMedPubMedCentralGoogle Scholar
  157. Young, L. J., & Insel, T. R. (2002). Hormones and parental behavior. In J. B. Becker, S. M. Breedlove, D. Crews, & M. M. McCarthy (Eds.), Behavioral endocrinology (2nd ed., pp. 331–369). Cambridge, MA: MIT.Google Scholar
  158. Zak, P. J., Kurzban, R., & Matzner, W. T. (2005). Oxytocin is associated with human trustworthiness. Hormones and Behavior, 48, 522–527.PubMedPubMedCentralGoogle Scholar
  159. Zehr, J. L., Maestripieri, D., & Wallen, K. (1998). Estradiol increases female sexual initiation independent of male responsiveness in rhesus monkeys. Hormones and Behavior, 33, 95–103.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology and Sport SciencesFriedrich-Alexander UniversityErlangenGermany
  2. 2.Department of PsychologyUniversity of Notre DameNotre DameUSA

Personalised recommendations