Skip to main content

Magnesium Electrodes

  • Chapter
  • First Online:
Challenges of a Rechargeable Magnesium Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

High-voltage, oxide-based insertion cathodes are commercial favorites for lithium-ion batteries. However, due to the double charge density, the magnesium cation (Mg2+) tends to bond covalently with the oxygen in the electrode structure which precludes its smooth and reversible intercalation. With the exception of lithium titanate, reversible magnesium intercalation has only been reported for sulfide-based electrodes which offer a low energy density due to low voltage and capacity. However, higher reversibility and energy density have been reported with conversion cathodes such as selenium and iodine. The current challenge for the development of a suitable cathode for a rechargeable magnesium battery with a metal anode is improving the rates of battery charge/discharge as well as increasing the cycle life. The use of modern magnesium electrolytes will accelerate this effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 6:3578–3591. https://doi.org/10.1021/acs.jpclett.5b01219

    Article  Google Scholar 

  2. God C, Bitschnau B, Kapper K et al (2017) Intercalation behaviour of magnesium into natural graphite using organic electrolyte systems. RSC Adv 7:14168–14175. https://doi.org/10.1039/C6RA28300D

    Article  Google Scholar 

  3. Pontiroli D, Aramini M, Gaboardi M et al (2013) Ionic conductivity in the Mg intercalated fullerene polymer Mg2C60. Carbon 51:143–147. https://doi.org/10.1016/j.carbon.2012.08.022

    Article  Google Scholar 

  4. Zhang R, Mizuno F, Ling C (2014) Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. Chem Commun 51:1108–1111. https://doi.org/10.1039/C4CC08139K

    Article  Google Scholar 

  5. Kawaguchi M, Kurasaki A (2012) Intercalation of magnesium into a graphite-like layered material of composition BC2N. Chem Commun 48:6897–6899. https://doi.org/10.1039/C2CC31435E

    Article  Google Scholar 

  6. Moundanga-iniamy M, Touzain P (1994) Study of the cointercalation of magnesium and cobalt chlorides into graphite. Mol Cryst Liq Cryst Sci Technol Sect Mol Cryst Liq Cryst 244:65–70. https://doi.org/10.1080/10587259408050084

    Article  Google Scholar 

  7. Pruvost S, Hérold C, Hérold A, Lagrange P (2004) Co-intercalation into graphite of lithium and sodium with an alkaline earth metal. Carbon 42:1825–1831. https://doi.org/10.1016/j.carbon.2004.03.014

    Article  Google Scholar 

  8. Giraudet J, Claves D, Guérin K et al (2007) Magnesium batteries: towards a first use of graphite fluorides. J Power Sources 173:592–598. https://doi.org/10.1016/j.jpowsour.2007.04.067

    Article  Google Scholar 

  9. Stumpp E, Alheid H, Schwarz M et al (1996) Ternary graphite intercalation compounds of type M(NH3)xCy with M = Be, Mg, Al, Sc, Y, La. Electrochemical synthesis, stability and NMR studies. Proc 8th Int Symp Intercalation Compd 57:925–930. https://doi.org/10.1016/0022-3697(95)00375-4

    Google Scholar 

  10. Wu N, Yin Y-X, Guo Y-G (2014) Size-dependent electrochemical magnesium storage performance of spinel lithium titanate. Chem Asian J 9:2099–2102. https://doi.org/10.1002/asia.201402286

    Article  Google Scholar 

  11. Wu N, Yang Z-Z, Yao H-R et al (2015) Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew Chem Int Ed 54:5757–5761. https://doi.org/10.1002/anie.201501005

    Article  Google Scholar 

  12. Arthur TS, Singh N, Matsui M (2012) Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun 16:103–106. https://doi.org/10.1016/j.elecom.2011.12.010

    Article  Google Scholar 

  13. Singh N, Arthur TS, Ling C et al (2012) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49:149–151. https://doi.org/10.1039/C2CC34673G

    Article  Google Scholar 

  14. Shao Y, Gu M, Li X et al (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14:255–260. https://doi.org/10.1021/nl403874y

    Article  Google Scholar 

  15. Periyapperuma K, Tran TT, Purcell MI, Obrovac MN (2015) The reversible magnesiation of Pb. Electrochimica Acta 165:162–165. https://doi.org/10.1016/j.electacta.2015.03.006

    Article  Google Scholar 

  16. Murgia F, Weldekidan ET, Stievano L et al (2015) First investigation of indium-based electrode in Mg battery. Electrochem Commun 60:56–59. https://doi.org/10.1016/j.elecom.2015.08.007

    Article  Google Scholar 

  17. Murgia F, Monconduit L, Stievano L, Berthelot R (2016) Electrochemical magnesiation of the intermetallic InBi through conversion-alloying mechanism. Electrochimica Acta 209:730–736. https://doi.org/10.1016/j.electacta.2016.04.020

    Article  Google Scholar 

  18. Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium. Applications to energy storage. J Electrochem Soc 137:775–780. https://doi.org/10.1149/1.2086553

    Article  Google Scholar 

  19. Crowe AJ, Bartlett BM (2016) Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte. J Solid State Chem 242(Part 2):102–106. https://doi.org/10.1016/j.jssc.2016.04.011

    Article  Google Scholar 

  20. Bruce PG, Krok F, Nowinski J et al (1991) Chemical intercalation of magnesium into solid hosts. J Mater Chem 1:705–706. https://doi.org/10.1039/JM9910100705

    Article  Google Scholar 

  21. Kaveevivitchai W, Huq A, Manthiram A (2017) Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries. J Mater Chem A 5:2309–2318. https://doi.org/10.1039/C6TA09497J

    Article  Google Scholar 

  22. Novák P, Desilvestro J (1993) Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc 140:140–144. https://doi.org/10.1149/1.2056075

    Article  Google Scholar 

  23. Novák P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium? Electrochimica Acta 45:351–367. https://doi.org/10.1016/S0013-4686(99)00216-9

    Article  Google Scholar 

  24. Novák P, Scheifele W, Haas O (1995) Magnesium insertion batteries—an alternative to lithium? Proc Seventh Int Meet Lithium Batter 54:479–482. https://doi.org/10.1016/0378-7753(94)02129-Q

    Google Scholar 

  25. Novák P, Scheifele W, Joho F, Haas O (1995) Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc 142:2544–2550. https://doi.org/10.1149/1.2050051

    Article  Google Scholar 

  26. Byeon A, Zhao M-Q, Ren CE et al (2017) Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl Mater Interfaces 9:4296–4300. https://doi.org/10.1021/acsami.6b04198

    Article  Google Scholar 

  27. Pan B, Feng Z, Sa N et al (2016) Advanced hybrid battery with a magnesium metal anode and a spinel LiMn2O4 cathode. Chem Commun 52:9961–9964. https://doi.org/10.1039/C6CC04133G

    Article  Google Scholar 

  28. Su S, NuLi Y, Huang Z et al (2016) A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl Mater Interfaces 8:7111–7117. https://doi.org/10.1021/acsami.6b00106

    Article  Google Scholar 

  29. Sun X, Bonnick P, Nazar LF (2016) Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1:297–301. https://doi.org/10.1021/acsenergylett.6b00145

    Article  Google Scholar 

  30. Sun X, Bonnick P, Duffort V et al (2016) A high capacity thiospinel cathode for Mg batteries. Energy Environ Sci 9:2273–2277. https://doi.org/10.1039/C6EE00724D

    Article  Google Scholar 

  31. Liu M, Jain A, Rong Z et al (2016) Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy Environ Sci 9:3201–3209. https://doi.org/10.1039/C6EE01731B

    Article  Google Scholar 

  32. Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727. https://doi.org/10.1038/35037553

    Article  Google Scholar 

  33. Ichitsubo T, Yagi S, Nakamura R et al (2014) A new aspect of Chevrel compounds as positive electrodes for magnesium batteries. J Mater Chem A 2:14858–14866. https://doi.org/10.1039/C4TA03063J

    Article  Google Scholar 

  34. Liang Y, Feng R, Yang S et al (2011) Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643. https://doi.org/10.1002/adma.201003560

    Article  Google Scholar 

  35. Liu B, Luo T, Mu G et al (2013) Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7:8051–8058. https://doi.org/10.1021/nn4032454

    Article  Google Scholar 

  36. Herb JT, Nist-Lund CA, Arnold CB (2016) A fluorinated alkoxyaluminate electrolyte for magnesium-ion batteries. ACS Energy Lett 1:1227–1232. https://doi.org/10.1021/acsenergylett.6b00356

    Article  Google Scholar 

  37. Nelson EG, Brody SI, Kampf JW, Bartlett BM (2014) A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J Mater Chem A 2:18194–18198. https://doi.org/10.1039/C4TA04625K

    Article  Google Scholar 

  38. Tutusaus O, Mohtadi R, Arthur TS et al (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54:7900–7904. https://doi.org/10.1002/anie.201412202

    Article  Google Scholar 

  39. Arthur TS, Zhang R, Ling C et al (2014) Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. ACS Appl Mater Interfaces 6:7004–7008. https://doi.org/10.1021/am5015327

    Article  Google Scholar 

  40. Zhang R, Arthur TS, Ling C, Mizuno F (2015) Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J Power Sources 282:630–638. https://doi.org/10.1016/j.jpowsour.2015.02.067

    Article  Google Scholar 

  41. Okamoto S, Ichitsubo T, Kawaguchi T et al (2015) Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2(8):1500072. https://doi.org/10.1002/advs.201500072

    Article  Google Scholar 

  42. NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46:3794–3796. https://doi.org/10.1039/C002456B

    Article  Google Scholar 

  43. Pan W, Liu X, Miao X et al (2015) Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. J Solid State Electrochem 19:3347–3353. https://doi.org/10.1007/s10008-015-2971-z

    Article  Google Scholar 

  44. Du X, Huang G, Qin Y, Wang L (2015) Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv 5:76352–76355. https://doi.org/10.1039/C5RA15284D

    Article  Google Scholar 

  45. Miao X, Chen Z, Wang N et al (2017) Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy 34:26–35. https://doi.org/10.1016/j.nanoen.2017.02.014

    Article  Google Scholar 

  46. Minella CB, Gao P, Zhao-Karger Z et al (2017) Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries. ChemElectroChem 4:738–745. https://doi.org/10.1002/celc.201700034

    Article  Google Scholar 

  47. An Q, Li Y, Deog Yoo H et al (2015) Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy 18:265–272. https://doi.org/10.1016/j.nanoen.2015.10.029

    Article  Google Scholar 

  48. Inamoto M, Kurihara H, Yajima T (2014) Electrode performance of sulfur-doped vanadium pentoxide gel prepared by microwave irradiation for rechargeable magnesium batteries. Curr Phys Chem 4:238–243

    Article  Google Scholar 

  49. Kim J-S, Kim R-H, Yun D-J et al (2016) Cycling stability of a VOx nanotube cathode in mixture of ethyl acetate and tetramethylsilane-based electrolytes for rechargeable Mg-ion batteries. ACS Appl Mater Interfaces 8:26657–26663. https://doi.org/10.1021/acsami.6b05808

    Article  Google Scholar 

  50. Perera SD, Archer RB, Damin CA et al (2017) Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J Power Sources 343:580–591. https://doi.org/10.1016/j.jpowsour.2017.01.052

    Article  Google Scholar 

  51. Yin J, Pelliccione CJ, Lee SH et al (2016) Communication—sol-gel synthesized magnesium vanadium oxide, MgxV2O5 · nH2O: the role of structural Mg2+ on battery performance. J Electrochem Soc 163:A1941–A1943. https://doi.org/10.1149/2.0781609jes

    Article  Google Scholar 

  52. Gershinsky G, Yoo HD, Gofer Y, Aurbach D (2013) Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29:10964–10972. https://doi.org/10.1021/la402391f

    Article  Google Scholar 

  53. Kim D-M, Kim Y, Arumugam D et al (2016) Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl Mater Interfaces 8:8554–8560. https://doi.org/10.1021/acsami.6b01352

    Article  Google Scholar 

  54. Pan B, Zhou D, Huang J et al (2016) 2,5-Dimethoxy-1,4-Benzoquinone (DMBQ) as organic cathode for rechargeable magnesium-ion batteries. J Electrochem Soc 163:A580–A583. https://doi.org/10.1149/2.0021605jes

    Article  Google Scholar 

  55. Pan B, Huang J, Feng Z et al (2016) Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv Energy Mater 6:n/a–n/a. https://doi.org/10.1002/aenm.201600140

    Google Scholar 

  56. Kim HS, Arthur TS, Allred GD et al (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427. https://doi.org/10.1038/ncomms1435

    Article  Google Scholar 

  57. Yu X, Manthiram A (2016) Performance enhancement and mechanistic studies of magnesium–sulfur cells with an advanced cathode structure. ACS Energy Lett 1:431–437. https://doi.org/10.1021/acsenergylett.6b00213

    Article  Google Scholar 

  58. Zhang Z, Cui Z, Qiao L et al (2017) Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201602055

  59. Shiga T, Hase Y, Kato Y et al (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun 49:9152–9154. https://doi.org/10.1039/C3CC43477J

    Article  Google Scholar 

  60. Esch TR, Bredow T (2016) Bulk and surface properties of magnesium peroxide MgO2. Appl Surf Sci 389:1202–1207. https://doi.org/10.1016/j.apsusc.2016.07.141

    Article  Google Scholar 

  61. Smith JG, Naruse J, Hiramatsu H, Siegel DJ (2017) Intrinsic conductivity in magnesium-oxygen battery discharge products: MgO and MgO2. Chem Mater. 29(7):3152–3163. https://doi.org/10.1021/acs.chemmater.7b00217

    Article  Google Scholar 

  62. Tian H, Gao T, Li X et al (2017) High power rechargeable magnesium/iodine battery chemistry. Nat Commun 8:14083. https://doi.org/10.1038/ncomms14083

    Article  Google Scholar 

  63. Yao X, Luo J, Dong Q, Wang D (2016) A rechargeable non-aqueous Mg-Br2 battery. Nano Energy 28:440–446. https://doi.org/10.1016/j.nanoen.2016.09.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Bucur, C.B. (2018). Magnesium Electrodes. In: Challenges of a Rechargeable Magnesium Battery. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-65067-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65067-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65066-1

  • Online ISBN: 978-3-319-65067-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics