Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

This chapter gives a brief overview of the history of neutrino physics, and the discovery of—and theory behind—neutrino oscillation. It also summarises the current knowledge in the field of neutrino oscillation before the analysis presented in this thesis, using information from solar, reactor, and long-baseline neutrino experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is actually a shortcut in the story: Pauli named his particle the neutron, until the neutron was discovered and found not to be the particle that Pauli postulated. Edoardo Amaldi, in a conversation with Fermi, was the first to coin the word ‘neutrino’ for Pauli’s particle, and the term was popularised by its use in Fermi’s theory of beta decay.

References

  1. W. Pauli, Letter of the 4th December 1930, Pauli Archive at CERN, http://microboone-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=953;filename=pauli%20letter1930.pdf

  2. E. Fermi, Versuch Einer Theorie der \({\beta }\)-Strahlen: I. Zeitschrift für Physik 88(3–4), 161–177 (1934). doi:10.1007/BF01351864

    Article  ADS  MATH  Google Scholar 

  3. F. Reines, The early days of experimental neutrino physics. Science 203(4375), 11–16 (1979). doi:10.1126/science.203.4375.11

    Article  ADS  Google Scholar 

  4. F. Reines, C. Cowan, The reines-cowan experiments: detecting the poltergeist. Los Alamos Sci. 25, 4–27 (1997)

    Google Scholar 

  5. F. Close, Neutrino. (OUP Oxford, 2010)

    Google Scholar 

  6. D. Griffiths, Introduction to Elementary Particles, 2nd, revised edn. (Wiley, 2008)

    Google Scholar 

  7. B. Kayser, Neutrino physics, eConf C040802, L004 (2004), arXiv:hep-ph/0506165

  8. B. Kayser, Neutrino oscillation physics, in Proceedings, 2011 European School of High-Energy Physics (ESHEP 2011): Cheile Gradistei, Romania, 7–20 September 2011, pp. 107–117 (2014), doi:10.5170/CERN-2014-003.107, also available at arXiv:1206.4325 [hep-ph]

  9. B. Kayser, Neutrino mass, mixing, and flavour change. J. Phys. G 33 (2006), http://pdg.lbl.gov/2007/reviews/numixrpp.pdf

  10. K. Nakamura and S. T. Petcov, Neutrino mass, mixing, and oscillations. Rev. Part. Phys. Chin. Phys. C 38, 235–258 ((2014) Updated June 2016), http://www-pdg.lbl.gov/2016/reviews/rpp2016-rev-neutrino-mixing.pdf

  11. Fundamental physics at the intensity frontier: report of the workshop held December 2011 in Rockville, MD (2012), doi:10.2172/1042577, also available at arXiv:1205.2671 [hep-ex]

  12. K. Zuber, Neutrino Physics 2nd edn. (Taylor & Francis, 2011)

    Google Scholar 

  13. V. Barger, D. Marfatia, K. Whisnant, The Physics of Neutrinos (Princeton Univ, Pr, 2012)

    Google Scholar 

  14. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics. (OUP Oxford, 2007)

    Google Scholar 

  15. M.C. Goodman, Resource letter ANP-1: advances in neutrino physics. Am. J. Phys. 84(12), 907–916 (2016). doi:10.1119/1.4962228

    Article  ADS  Google Scholar 

  16. F. Reines, The neutrino: from poltergeist to particle. Rev. Mod. Phys. 68, 317–327 (1996). doi:10.1103/RevModPhys.68.317, http://www.nobelprize.org/nobel_prizes/physics/laureates/1995/reines-lecture.html

  17. F. Reines, C.L. Cowan, Detection of the free neutrino. Phys. Rev. 92, 830–831 (1953). doi:10.1103/PhysRev.92.830

    Article  ADS  Google Scholar 

  18. C.L. Cowan et al., Detection of the free neutrino: a confirmation. Science 124(3212), 103–104 (1956). doi:10.1126/science.124.3212.103

    Article  ADS  Google Scholar 

  19. F. Reines et al., Detection of the free antineutrino. Phys. Rev. 117, 159–173 (1960). doi:10.1103/PhysRev.117.159

    Article  ADS  Google Scholar 

  20. R. Davis, Attempt to detect the antineutrinos from a nuclear reactor by the \({\rm {Cl}}^{37}(\bar{\nu }, {e}^{-}){\rm {A}}^{37}\) reaction. Phys. Rev. 97, 766–769 (1955). doi:10.1103/PhysRev.97.766

    Article  ADS  Google Scholar 

  21. G. Danby et al., Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett. 9, 36–44 (1962). doi:10.1103/PhysRevLett.9.36

    Article  ADS  Google Scholar 

  22. M.M. Block et al., Neutrino interactions in the CERN heavy liquid bubble chamber. Phys. Lett. 12(3), 281–285 (1964). doi:10.1016/0031-9163(64)91104-7

    Article  ADS  Google Scholar 

  23. J.K. Bienlein et al., Spark chamber study of high-energy neutrino interactions. Phys. Lett. 13(1), 80–86 (1964). doi:10.1016/0031-9163(64)90316-6

    Article  ADS  Google Scholar 

  24. M.L. Perl et al., Evidence for anomalous lepton production in \({{e}^{+}-{e}^{-}}\) annihilation. Phys. Rev. Lett. 35, 1489–1492 (1975). doi:10.1103/PhysRevLett.35.1489

    Article  ADS  Google Scholar 

  25. M.L. Perl, Reflections on the discovery of the tau lepton, nobel lectures in physics 1991–1995 (1997), https://www.nobelprize.org/nobel_prizes/physics/laureates/1995/perl-lecture.html

  26. K. Kodama et al., Observation of tau neutrino interactions. Phys. Lett. B 504(3), 218–224 (2001). doi:10.1016/S0370-2693(01)00307-0

    Article  ADS  MathSciNet  Google Scholar 

  27. The ALEPH Collaboration et al., Precision electroweak measurements on the Z resonance. Phys. Rep. 427(5-6), 257–454 (2006). doi:10.1016/j.physrep.2005.12.006

  28. R. Davis, D.S. Harmer, K.C. Hoffman, Search for neutrinos from the sun. Phys. Rev. Lett. 20, 1205–1209 (1968). doi:10.1103/PhysRevLett.20.1205

  29. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge. J. Exp. Theor. Phys. 26, 984–988 (1968), http://jetp.ac.ru/cgi-bin/e/index/e/26/5/p984?a=list

  30. K.S. Hirata et al., Observation of \(^{8}{\rm B}\) solar neutrinos in the Kamiokande-II detector. Phys. Rev. Lett. 63, 16–19 (1989). doi:10.1103/PhysRevLett.63.16

  31. M. Cribier et al., Results of the whole gallex experiment. Nucl. Phys. B Proc. Suppl. 70(1–3), 284–291 (1999). doi:10.1016/S0920-5632(98)00438-1, Proceedings of the Fifth International Workshop on topics in Astroparticle and Underground Physics

  32. J.N. Abdurashitov et al., Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year solar cycle. J. Exp. Theor. Phys. 95(2), 181–193 (2002). doi:10.1134/1.1506424

    Article  ADS  Google Scholar 

  33. Q.R. Ahmad et al., (SNO Collaboration), Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002). doi:10.1103/PhysRevLett.89.011301

    Article  ADS  Google Scholar 

  34. A.B. McDonald, The sudbury neutrino observatory: observation of flavor change for solar neutrinos. Rev. Mod. Phys. 88(3), 030502 (2016). doi:10.1103/RevModPhys.88.030502, https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/mcdonald-lecture.html

  35. Y. Fukuda et al., (Super-Kamiokande Collaboration), Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). doi:10.1103/PhysRevLett.81.1562

    Article  ADS  Google Scholar 

  36. K.S. Hirata et al., Experimental study of the atmospheric neutrino flux. Phys. Lett. B 205(2), 416–420 (1988). doi:10.1016/0370-2693(88)91690-5

    Article  ADS  Google Scholar 

  37. K.S. Hirata et al., Observation of a small atmospheric \(\nu _{\mu }\)/\(\nu _{e}\) ratio in Kamiokande. Phys. Lett. B 280(1), 146–152 (1992). doi:10.1016/0370-2693(92)90788-6

    Article  ADS  Google Scholar 

  38. Y. Fukuda et al., Atmospheric \(\nu _{\mu }\)/\(\nu _{e}\) ratio in the Multi-GeV energy range. Phys. Lett. B 335(2), 237–245 (1994). doi:10.1016/0370-2693(94)91420-6

    Article  ADS  Google Scholar 

  39. D. Casper et al., Measurement of atmospheric neutrino composition with the IMB-3 detector. Phys. Rev. Lett. 66, 2561–2564 (1991). doi:10.1103/PhysRevLett.66.2561

    Article  ADS  Google Scholar 

  40. R. Becker-Szendy et al., Electron-and muon-neutrino content of the atmospheric flux. Phys. Rev. D 46, 3720–3724 (1992). doi:10.1103/PhysRevD.46.3720

    Article  ADS  Google Scholar 

  41. T. Kajita, Discovery of atmospheric neutrino oscillations. Rev. Mod. Phys. 88(3), 030501 (2016). doi:10.1103/RevModPhys.88.030501, https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/kajita-lecture.html

  42. K. Eguchi et al., (KamLAND Collaboration), First results from kamLAND: evidence for reactor antineutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003). doi:10.1103/PhysRevLett.90.021802

    Article  ADS  Google Scholar 

  43. T. Araki et al., (KamLAND Collaboration), Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005). doi:10.1103/PhysRevLett.94.081801

    Article  ADS  Google Scholar 

  44. S. Abe et al., (KamLAND Collaboration), Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 100, 221803 (2008). doi:10.1103/PhysRevLett.100.221803

    Article  ADS  Google Scholar 

  45. F.P. An et al., (Daya Bay Collaboration), Observation of electron-antineutrino disappearance at daya bay. Phys. Rev. Lett. 108, 171803 (2012). doi:10.1103/PhysRevLett.108.171803

    Article  ADS  Google Scholar 

  46. K. Abe et al., (T2K Collaboration), Observation of electron neutrino appearance in a muon neutrino beam. Phys. Rev. Lett. 112, 061802 (2014). doi:10.1103/PhysRevLett.112.061802

    Article  ADS  Google Scholar 

  47. W. Xu et al. (Majorana Collaboration), The majorana demonstrator: a search for neutrinoless double-beta decay of 76 Ge. J. Phys. Conf. Ser. 606(1), 012004 (2015), http://stacks.iop.org/1742-6596/606/i=1/a=012004

  48. M. Agostini et al. (GERDA Collaboration), 2\(\nu \beta \beta \) Decay of 76 Ge Into Excited States With GERDA Phase I. J. Phys. G: Nucl. Part. Phys. 42(11), 115201 (2015), http://stacks.iop.org/0954-3899/42/i=11/a=115201

  49. C. Arnaboldi et al., (CUORE Collaboration), CUORE: a cryogenic underground observatory for rare events. Nucl. Instrum. Meth. Phys. Res. Sect. A 518(3), 775–798 (2004). doi:10.1016/j.nima.2003.07.067

  50. S. Andringa, E. Arushanova, S. Asahi et al., Current status and future prospects of the SNO+ Experiment. Adv. High Energy Phys. 2016, (2016). doi:10.1155/2016/6194250

  51. B. Kayser, Two questions about neutrinos (2010), arXiv:1012.4469 [hep-ph]

  52. V. Barger, K. Whisnant, S. Pakvasa, R.J.N. Phillips, Matter effects on three-neutrino oscillations. Phys. Rev. D 22, 2718–2726 (1980). doi:10.1103/PhysRevD.22.2718

    Article  ADS  Google Scholar 

  53. O. Mena, S. Parke, Unified graphical summary of neutrino mixing parameters. Phys. Rev. D 69, 117301 (2004). doi:10.1103/PhysRevD.69.117301

    Article  ADS  Google Scholar 

  54. E. Kh. Akhmedov, A.Yu. Smirnov, Paradoxes of neutrino oscillations. Phys. At. Nucl. 72(8), 1363–1381 (2009). doi:10.1134/S1063778809080122

  55. E. Kh Akhmedov, Neutrino physics, lectures given at trieste summer school in particle physics, June 7–July 9, 1999 (2000), arXiv:hep-ph/0001264

  56. K. Hagiwara, N. Okamura, K. Senda, The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea. J. High Energy Phys. 2011(9), 82 (2011). doi:10.1007/JHEP09(2011)082

    Article  MATH  Google Scholar 

  57. http://www.phy.duke.edu/raw22/public/Prob3++/

  58. K.A. Olive et al. (Particle Data Group), Review of particle physics. Chin. Phys. C 38, 090001 ((2014) and 2015 update). doi:10.1088/1674-1137/38/9/090001

  59. A. Gando et al., (KamLAND Collaboration), Reactor on-off antineutrino measurement with kamLAND. Phys. Rev. D 88, 033001 (2013). doi:10.1103/PhysRevD.88.033001

  60. K. Abe et al., (T2K Collaboration), Precise measurement of the neutrino mixing parameter \({\theta }_{23}\) from muon neutrino disappearance in an off-axis beam. Phys. Rev. Lett. 112, 181801 (2014). doi:10.1103/PhysRevLett.112.181801

  61. A. Himmel, Super-Kamiokande Collaboration, recent results from Super-Kamiokande. AIP Conf. Proc. 1604(1), 345–352 (2014). doi:10.1063/1.4883450

  62. P. Adamson et al., (MINOS Collaboration), Combined analysis of \({\nu }_{\mu }\) disappearance and \({\nu }_{\mu }\rightarrow {\nu }_{e}\) appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014). doi:10.1103/PhysRevLett.112.191801

  63. F.P. An et al., (Daya Bay Collaboration), New measurement of antineutrino oscillation with the full detector configuration at daya bay. Phys. Rev. Lett. 115, 111802 (2015). doi:10.1103/PhysRevLett.115.111802

  64. F.P. An et al., (Daya Bay Collaboration), Independent measurement of the neutrino mixing angle \({\theta }_{13}\) via neutron capture on hydrogen at daya bay. Phys. Rev. D 90, 071101 (2014). doi:10.1103/PhysRevD.90.071101

    Article  ADS  Google Scholar 

  65. Y. Abe et al., (Double Chooz Collaboration), Ortho-Positronium observation in the double chooz experiment. J. High Energy Phys. 2014(10), 32 (2014). doi:10.1007/JHEP10(2014)032

    Article  Google Scholar 

  66. Y. Abe et al., (Double Chooz Collaboration), First Measurement of \(\theta _{13}\) from delayed neutron capture on hydrogen in the double chooz experiment. Phys. Lett. B 723(1–3), 66–70 (2013). doi:10.1016/j.physletb.2013.04.050

    Article  ADS  Google Scholar 

  67. J.K. Ahn et al., (RENO Collaboration), Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012). doi:10.1103/PhysRevLett.108.191802

    Article  ADS  Google Scholar 

  68. K. Abe et al., (T2K Collaboration), Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment With \(6.6\times {10}^{20}\) protons on target. Phys. Rev. D 91, 072010 (2015). doi:10.1103/PhysRevD.91.072010

    Article  ADS  Google Scholar 

  69. J. Beringer et al. (Particle Data Group), Review of particle physics. Phys. Rev. D 86, 010001 (2012) and (2013 partial update for the 2014 edition). doi:10.1103/PhysRevD.86.010001

  70. P. Adamson et al., (NOvA Collaboration), First measurement of electron neutrino appearance in NOvA. Phys. Rev. Lett. 116, 151806 (2016). doi:10.1103/PhysRevLett.116.151806

    Article  ADS  Google Scholar 

  71. K. Abe et al., (Super-Kamiokande Collaboration), Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande. Phys. Rev. Lett. 107, 241801 (2011). doi:10.1103/PhysRevLett.107.241801

    Article  ADS  Google Scholar 

  72. P. Adamson et al., (MINOS Collaboration), Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys. Rev. Lett. 110, 251801 (2013). doi:10.1103/PhysRevLett.110.251801

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsty Elizabeth Duffy .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Duffy, K.E. (2017). Introduction to Neutrino Oscillation. In: First Measurement of Neutrino and Antineutrino Oscillation at T2K. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65040-1_2

Download citation

Publish with us

Policies and ethics