A New Framework for Defining Realistic SLAs: An Evidence-Based Approach

  • Minsu Cho
  • Minseok SongEmail author
  • Carlos Müller
  • Pablo Fernandez
  • Adela del-Río-Ortega
  • Manuel Resinas
  • Antonio Ruiz-Cortés
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 297)


In a changing and competitive business world, business processes are at the heart of modern organizations. In some cases, service level agreements (SLAs) are used to regulate how these business processes are provided. This is usually the case when the business process is outsourced, and some guarantees about how the outsourcing service is provided are required. Although some work has been done concerning the structure of SLAs for business processes, the definition of service level objectives (SLOs) remains a manual task performed by experts based on their previous knowledge and intuition. Therefore, an evidence-based approach that curtails humans involvement is required for the definition of realistic while challenging SLOs. This is the purpose of this paper, where performance-focused process mining, goal programming optimization techniques, and simulation techniques have been availed to implement an evidence-based framework for the definition of SLAs. Furthermore, the applicability of the proposed framework has been evaluated in a case study carried out in a hospital scenario.


Service level agreement Process mining Process performance indicators Optimization Goal programming Simulation 


  1. 1.
    Harmon, P.: The scope and evolution of business process management. In: Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management, vol. 1, pp. 169–194. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-00416-2_3 Google Scholar
  2. 2.
    del-Río-Ortega, A., Gutiérrez, A.M., Durán, A., Resinas, M., Ruiz–Cortés, A.: Modelling service level agreements for business process outsourcing services. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 485–500. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_30 CrossRefGoogle Scholar
  3. 3.
    Alves, T.L., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark data. In: 26th IEEE International Conference on Software Maintenance (ICSM 2010), pp. 1–10 (2010)Google Scholar
  4. 4.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  5. 5.
    Aouni, B., Kettani, O.: Goal programming model: a glorious history and a promising future. Eur. J. Oper. Res. 133, 225–231 (2001)CrossRefGoogle Scholar
  6. 6.
    Wichura, M.J.: Algorithm as 241: the percentage points of the normal distribution. J. R. Stat. Soc. Ser. C (Appl. Stat.) 37(3), 477–484 (1988)Google Scholar
  7. 7.
    Whitley, E., Ball, J.: Statistics review 2: samples and populations. Crit. Care 6(2), 143 (2002)CrossRefGoogle Scholar
  8. 8.
    Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)CrossRefGoogle Scholar
  9. 9.
    Cardoso, J., Barros, A., May, N., Kylau, U.: Towards a unified service description language for the internet of services: requirements and first developments. In: 2010 IEEE International Conference on Services Computing (SCC), pp. 602–609, July 2010Google Scholar
  10. 10.
    Wieder, P., Butler, J., Theilmann, W., Yahyapour, R. (eds.): Service Level Agreements for Cloud Computing, vol. 2506. Springer, New York (2011). doi: 10.1007/978-1-4614-1614-2 Google Scholar
  11. 11.
    Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., Radziuk, E.: SLA design from a business perspective. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS, vol. 3775, pp. 72–83. Springer, Heidelberg (2005). doi: 10.1007/11568285_7 CrossRefGoogle Scholar
  12. 12.
    Kieninger, A., Baltadzhiev, D., Schmitz, B., Satzger, G.: Towards service level engineering for IT services: defining IT services from a line of business perspective. In: 2011 Annual SRII Global Conference, pp. 759–766, March 2011Google Scholar
  13. 13.
    del-Río-Ortega, A., García, F., Resinas, M., Weber, E., Ruiz, F., Ruiz-Cortés, A.: Enriching decision making with data-based thresholds of process-related KPIs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 193–209. Springer, Cham (2017). doi: 10.1007/978-3-319-59536-8_13 CrossRefGoogle Scholar
  14. 14.
    Rodriguez, R.R., Saiz, J.J.A., Bas, A.O.: Quantitative relationships between key performance indicators for supporting decision-making processes. Comput. Ind. 60(2), 104–113 (2009)CrossRefGoogle Scholar
  15. 15.
    Diamantini, C., Genga, L., Potena, D., Storti, E.: Collaborative building of an ontology of key performance indicators. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 148–165. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45563-0_9 Google Scholar
  16. 16.
    Mansar, S.L., Reijers, H.A.: Best practices in business process redesign: validation of a redesign framework. Comput. Ind. 56(5), 457–471 (2005)CrossRefGoogle Scholar
  17. 17.
    Watson, H.J., Wixom, B.H.: The current state of business intelligence. Computer 40(9), 96–99 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Minsu Cho
    • 1
    • 2
  • Minseok Song
    • 2
    Email author
  • Carlos Müller
    • 3
  • Pablo Fernandez
    • 3
  • Adela del-Río-Ortega
    • 3
  • Manuel Resinas
    • 3
  • Antonio Ruiz-Cortés
    • 3
  1. 1.Ulsan National Institute of Science and TechnologyUlsanKorea
  2. 2.Pohang University of Science and TechnologyPohangKorea
  3. 3.University of SevilleSevilleSpain

Personalised recommendations