Advertisement

Intra and Inter-case Features in Predictive Process Monitoring: A Tale of Two Dimensions

  • Arik Senderovich
  • Chiara Di Francescomarino
  • Chiara Ghidini
  • Kerwin Jorbina
  • Fabrizio Maria Maggi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)

Abstract

Predictive process monitoring is concerned with predicting measures of interest for a running case (e.g., a business outcome or the remaining time) based on historical event logs. Most of the current predictive process monitoring approaches only consider intra-case information that comes from the case whose measures of interest one wishes to predict. However, in many systems, the outcome of a running case depends on the interplay of all cases that are being executed concurrently. For example, in many situations, running cases compete over scarce resources. In this paper, following standard predictive process monitoring approaches, we employ supervised machine learning for prediction. In particular, we present a method for feature encoding of process cases that relies on a bi-dimensional state space representation: the first dimension corresponds to intra-case dependencies, while the second dimension reflects inter-case dependencies to represent shared information among running cases. The inter-case encoding derives features based on the notion of case types that can be used to partition the event log into clusters of cases that share common characteristics. To demonstrate the usefulness and applicability of the method, we evaluated it against two real-life datasets coming from an Israeli emergency department process, and an open dataset of a manufacturing process.

Keywords

Predictive Process Monitoring Inter-case Features Bi-dimensional Feature Encoding 

References

  1. 1.
    van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). http://dx.doi.org/10.1023/A:1018054314350zbMATHGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Guestrin, C.: XGboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)Google Scholar
  6. 6.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRefGoogle Scholar
  7. 7.
    Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T., Amin, A., Duin, R.P.W., Ridder, D., Kamel, M. (eds.) SSPR /SPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002). doi: 10.1007/3-540-70659-3_2CrossRefGoogle Scholar
  8. 8.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88871-0_22CrossRefGoogle Scholar
  9. 9.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33606-5_18CrossRefGoogle Scholar
  10. 10.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, Berlin (2001)zbMATHGoogle Scholar
  11. 11.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  13. 13.
    Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_21CrossRefGoogle Scholar
  14. 14.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi: 10.1007/978-3-319-07881-6_31CrossRefGoogle Scholar
  15. 15.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. CoRR abs/1602.07566 (2016)Google Scholar
  17. 17.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)CrossRefGoogle Scholar
  18. 18.
    Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York (2014)CrossRefGoogle Scholar
  19. 19.
    Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). doi: 10.1007/978-3-319-59536-8_30CrossRefGoogle Scholar
  20. 20.
    Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_23CrossRefGoogle Scholar
  21. 21.
    Verenich, I.: A general framework for predictive business process monitoring. In: Proceedings of CAiSE 2016 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Arik Senderovich
    • 1
  • Chiara Di Francescomarino
    • 2
  • Chiara Ghidini
    • 2
  • Kerwin Jorbina
    • 3
  • Fabrizio Maria Maggi
    • 3
  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Fondazione Bruno KesslerTrentoItaly
  3. 3.University of TartuTartuEstonia

Personalised recommendations