Skip to main content

An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring

  • Conference paper
  • First Online:
Business Process Management (BPM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10445))

Included in the following conference series:


Predictive business process monitoring aims at leveraging past process execution data to predict how ongoing (uncompleted) process executions will unfold up to their completion. Nevertheless, cases exist in which, together with past execution data, some additional knowledge (a-priori knowledge) about how a process execution will develop in the future is available. This knowledge about the future can be leveraged for improving the quality of the predictions of events that are currently unknown. In this paper, we present two techniques - based on Recurrent Neural Networks with Long Short-Term Memory (LSTM) cells - able to leverage knowledge about the structure of the process execution traces as well as a-priori knowledge about how they will unfold in the future for predicting the sequence of future activities of ongoing process executions. The results obtained by applying these techniques on six real-life logs show an improvement in terms of accuracy over a plain LSTM-based baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


  1. 1.

    Note that, in order to prevent overflow in the computation, the estimated probability for sequences of activities is computed as the sum of the logarithm of the probabilities of the next activities rather than as the product of the probabilities of the next activities.

  2. 2.

  3. 3.

    The number of rules selected has been determined empirically to allow them to be satisfied in around 50% of the traces of the testing set.

  4. 4.

    We set bSize to 3 and, for the coefficient in charge of weakening the probabilities of activities in a cycle, we used the exponential formula (\(e^{j}\), where j is the number of cycle repetitions).

  5. 5.

    We used an architecture characterized by two LSTM layers. The algorithm used is the Adam learning algorithm with categorical cross entropy loss and the dropout coefficient has been set to 0.2.


  1. 3TU Data Center: BPI Challenge 2011 Event Log (2011). doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

  2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). software available from

  4. Buijs, J.: Environmental permit application process (“wabo”), coselog project - municipality 4 (2014). doi:10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32

  5. Chollet, F.: Keras (2015).

  6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38709-8_8

    Chapter  Google Scholar 

  7. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)

    Article  Google Scholar 

  8. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_22

    Chapter  Google Scholar 

  9. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)

    Google Scholar 

  10. van Dongen, B.: Bpi challenge 2012 (2012). doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

  11. van Dongen, B.: Bpi challenge 2017 (2017). doi:10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

  12. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). doi:10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  13. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decision Support Systems (2017)

    Article  Google Scholar 

  14. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5_18

    Chapter  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Sequence Modeling: Recurrent and Recursive Nets. In: Deep Learning, pp. 373–420. MIT Press, Cambridge (2016)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9_18

    Chapter  Google Scholar 

  19. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  20. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Proceedings of the 2012 Annual SRII Global Conference, SRII 2012, pp. 313–322. IEEE Computer Society, Washington, DC (2012)

    Google Scholar 

  21. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9_22

    Chapter  Google Scholar 

  22. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  23. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. CoRR abs/1602.07566 (2016)

    Google Scholar 

  24. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  25. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

    Article  Google Scholar 

  26. Steeman, W.: Bpi challenge 2013 (2013). doi:10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

  27. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9_18

    Chapter  Google Scholar 

  28. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). doi:10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  29. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). doi:10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  30. Tillmann, C., Ney, H.: Word reordering and a dynamic programming beam search algorithm for statistical machine translation. Comput. Linguist. 29(1), 97–133 (2003)

    Article  Google Scholar 

Download references


This research has been partially carried out within the Euregio IPN12 KAOS, which is funded by the “European Region Tyrol-South Tyrol-Trentino”(EGTC) under the first call for basic research projects.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chiara Di Francescomarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A. (2017). An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds) Business Process Management. BPM 2017. Lecture Notes in Computer Science(), vol 10445. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64999-3

  • Online ISBN: 978-3-319-65000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics