Advertisement

Conclusion and Outlook

  • Martin RingbauerEmail author
Chapter
  • 569 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

THE work presented in this thesis addresses some of the key foundational questions on the path towards a better understanding of quantum mechanics.

References

  1. 1.
    Ringbauer, M., Weinhold, T.J., White, A.G., Vanner, M.R.: Generation of mechanical interference fringes by multi-photon quantum measurement. (2016). arXiv:1602.05955
  2. 2.
    Cabello, A., Gu, M., Gühne, O., Larsson, J.-Å., Wiesner, K.: Thermodynamical cost of some interpretations of quantum theory. Phys. Rev. A 94, 052127 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Frauchiger, D., Renner, R.: Single-world interpretations of quantum theory cannot be self-consistent. arXiv:1604.07422 (2016)
  4. 4.
    Brukner, C.: On the quantum measurement problem. arXiv:1507.05255 (2015)
  5. 5.
    Shimony, A.: Search for a worldview which can accommodate our knowledge of microphysics. In: Philosophical Consequences of Quantum Theory (1989)Google Scholar
  6. 6.
    Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Branciard, C.: Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Nat. Acad. Sci. USA 110, 6742–6747 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Abbott, A., Alzieu, P.-L., Hall, M., Branciard, C.: Tight state-independent uncertainty relations for qubits. Mathematics 4, 8 (2016)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandQueenslandAustralia

Personalised recommendations