Advertisement

Causality in a Quantum World

  • Martin RingbauerEmail author
Chapter
  • 628 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter focuses on using the theory of causal modeling to study relaxations of Bell’s assumptions, in particular relaxations of the local causality assumption

Notes

Acknowledgements

This chapter is based on work that was first published in Ref. [49], and, where appropriate, I have incorporated text of that paper. The experiments were performed with Christina Giarmatzi and the theory was largely developed by Rafael Chaves.

References

  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)Google Scholar
  2. 2.
    Bell, J.S.: The theory of local beables. Epistemological Lett. 9, 11–24 (1976)Google Scholar
  3. 3.
    Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Wiseman, H. M., Cavalcanti, E. G.: Causarum investigatio and the two bell’s theorems of John Bell (2015). arXiv:1503.06413 Google Scholar
  7. 7.
    Cavalcanti, E.G., Wiseman, H.M.: Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments). Found. Phys. 42, 1329–1338 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zukowski, M., Brukner, Č.: Quantum non-locality-it ain’t necessarily so. J. Phys. A: Math. Theor. 47, 424009 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brans, C.H.: Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219–226 (1988)CrossRefGoogle Scholar
  10. 10.
    Branciard, C., Brunner, N., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Ling, A., Scarani, V.: Testing quantum correlations versus single-particle properties within Leggett’s model and beyond. Nat. Phys. 4, 681–685 (2008)CrossRefGoogle Scholar
  11. 11.
    Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Hall, M.J.W.: Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84, 022102 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Chaves, R., Kueng, R., Brask, J.B., Gross, D.: Unifying framework for relaxations of the causal assumptions in Bell’s theorem. Phys. Rev. Lett. 114, 140403 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Aktas, D., Tanzilli, S., Martin, A., Pütz, G., Thew, R., Gisin, N.: Demonstration of quantum nonlocality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Pütz, G., Gisin, N.: Measurement dependent locality. New J. Phys. 18, 055006 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chaves, R., Majenz, C., Gross, D.: Information-theoretic implications of quantum causal structures. Nat. Commun. 6, 5766 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Fritz, T.: Beyond Bell’s theorem: correlation scenarios. New J. Phys. 14, 103001 (2012)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Fritz, T.: Beyond Bell’s theorem ii: scenarios with arbitrary causal structure. Comm. Math. Phys. 1–45 (2015)Google Scholar
  21. 21.
    Cavalcanti, E.G., Lal, R.: On modifications of Reichenbach’s principle of common cause in light of Bell’s theorem. J. Phys. A Math. Theor. 47, 424018 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pienaar, J., Brukner, Č.: A graph-separation theorem for quantum causal models. New J. Phys. 17, 073020 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Henson, J., Lal, R., Pusey, M.F.: Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16, 113043 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Brukner, Č.: Quantum causality. Nat. Phys. 10, 259–263 (2014)CrossRefGoogle Scholar
  26. 26.
    Oreshkov, O., Giarmatzi, C.: Causal and causally separable processes. New J. Phys. 18, 093020 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Munroe, R.: XKCD webcomic (2009). https://xkcd.com/552/
  28. 28.
    Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)Google Scholar
  29. 29.
    Spirtes, P., Glymour, N., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, New York (2001)Google Scholar
  30. 30.
    Woodward, J.: Making Things Happen: A Theory of Causal Explanation. Oxford University Press, Oxford (2005)Google Scholar
  31. 31.
    Costa, F., Shrapnel, S.: Quantum causal modelling. New J. Phys. 18, 063032 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Hausman, D.M., Woodward, J.: Independence, invariance and the causal Markov condition. Br. J. Philos. Sci. 50, 521–583 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Näger, P.M.: The causal problem of entanglement. Synthese 193, 1127–1155 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Clarke, J.: Private communicationGoogle Scholar
  35. 35.
    Evans, P. W.: Quantum causal models, faithfulness and retrocausality (2015). arXiv:1506.08925 Google Scholar
  36. 36.
    Geiger, D., Meek, C.: Quantifier elimination for statistical problems. In: Proceedings of 15th Conference on Uncertainty in Artificial Intelligence, pp. 226–235 (1999)Google Scholar
  37. 37.
    Tian, J., Pearl, J.: On the testable implications of causal models with hidden variables. In: Proceedings of 18th Conferece Uncertainty in Atrificial Intelligence, pp. 519–527. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  38. 38.
    Chaves, R., Luft, L., Maciel, T. O., Gross, D., Janzing, D., Schölkopf, B.: Inferring latent structures via information inequalities. In: Proceedings of 30th Conference on Uncertainty in Artificial Intelligence, pp. 112–121 (2014)Google Scholar
  39. 39.
    Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.: Distinguishing cause from effect using observational data: methods and benchmarks. J. Mach. Learn. Res. 17, 1–102 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ferrie, C.: Private communicationGoogle Scholar
  41. 41.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  42. 42.
    Ringbauer, M., Broome, M. A., Myers, C. R., White, A. G., Ralph, T. C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, p. 4145 (2014)Google Scholar
  43. 43.
    Zych, M.: Private communicationGoogle Scholar
  44. 44.
    Pütz, G., Rosset, D., Barnea, T.J., Liang, Y.-C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)CrossRefGoogle Scholar
  45. 45.
    Hall, M. J. W.: The Significance of Measurement Independence for Bell Inequalities and Locality, 189–204. Springer International Publishing, New York (2016)Google Scholar
  46. 46.
    Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Pawłowski, M., Kofler, J., Paterek, T., Seevinck, M., Brukner, Č.: Non-local setting and outcome information for violation of Bell’s inequality. New J. Phys. 12, 083051 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Dash, D.: Restructuring dynamic causal systems in equilibrium. In: Proceedings of 10th Conference on Artificial Intelligence and Statistics (2005)Google Scholar
  50. 50.
    Ringbauer, M., Giarmatzi, C., Chaves, R., Costa, F., White, A.G., Fedrizzi, A.: Experimental test of nonlocal causality. Sci. Adv. 2, e1600162 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Stenner, M.D., Gauthier, D.J., Neifeld, M.A.: The speed of information in a ’fast-light’ optical medium. Nature 425, 695–698 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Hossenfelder, S. Free will is dead, let’s bury it. Backreaction (Blog) (2016)Google Scholar
  54. 54.
    Cramer, J. G.: An overview of the transactional interpretation. Int. J. Theor. Phys. 27 (1988)Google Scholar
  55. 55.
    Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review (2001). arXiv:quant-ph/0105101 Google Scholar
  56. 56.
    Price, H., Wharton, K.: Disentangling the quantum world. Entropy 17, 7752–7767 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)ADSCrossRefGoogle Scholar
  58. 58.
    Fedrizzi, A., Herbst, T., Poppe, A., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    Symul, T., Assad, S. M., Lam, P. K.: Real time demonstration of high bitrate quantum random number generation with coherent laser light. App. Phys. Lett. 98 (2011)Google Scholar
  60. 60.
    Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.: Quantifying causal influences. Ann. Stat. 41, 2324–2358 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Korb, K. B., Hope, L. R., Nicholson, A. E., Axnick, K.: Varieties of causal intervention. In: PRICAI 2004: Trends in Artificial Intelligence, 322–331. Springer, Heidelberg (2004)Google Scholar
  63. 63.
    Braunstein, S.L., Caves, C.M.: Wringing out better Bell inequalities. Nucl. Phys. B 6, 211–221 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Gallicchio, J., Friedman, A.S., Kaiser, D.I.: Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987)ADSCrossRefGoogle Scholar
  66. 66.
    Eberhard, P.H.: Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R750 (1993)ADSCrossRefGoogle Scholar
  67. 67.
    Leggett, A.J.: Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33, 1469–1493 (2003)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental test of nonlocal realistic theories without the rotational symmetry assumption. Phys. Rev. Lett. 99, 210406 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    Colbeck, R., Renner, R.: Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101, 050403 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Branciard, C.: Bell’s local causality, Leggett’s crypto-nonlocality, and quantum separability are genuinely different concepts. Phys. Rev. A 88, 042113 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of ’spooky action at a distance’. Nature 454, 861–864 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    Bancal, J.-D., Pironio, S., Acín, A., Liang, Y.-C., Scarani, V., Gisin, N.: Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)CrossRefGoogle Scholar
  74. 74.
    Davies, T.: Private communicationGoogle Scholar
  75. 75.
    Leifer, M. S., Spekkens, R. W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A, 052130 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandQueenslandAustralia

Personalised recommendations