Skip to main content

Causality in a Quantum World

  • Chapter
  • First Online:
Exploring Quantum Foundations with Single Photons

Part of the book series: Springer Theses ((Springer Theses))

  • 823 Accesses

Abstract

This chapter focuses on using the theory of causal modeling to study relaxations of Bell’s assumptions, in particular relaxations of the local causality assumption

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, Eq. (5.2) is the Markov condition, and the causal interpretation requires the implicit assumption that interventions on the various variables are possible.

  2. 2.

    Although one has to be careful when modeling quantum systems with classical causal models, properties such as faithfulness still apply [31].

  3. 3.

    The sets of probability distributions compatible with both models is in the intersection of the sets that are compatible with either model. In the case of parameter independence these models are mutually exclusive, because one contains a link \(A\rightarrow B\) and the other a link \(B\rightarrow A\).

  4. 4.

    Relativity merely implies that there can be no superluminal information transfer (i.e. signal locality), but not that causal influences cannot travel faster than the speed of light. For example, both phase- an group- velocity of a wavepacket can be superluminal, but the signal velocity (identified with the velocity of an edge) is always bounded by the speed of light in vacuum [51]. In other words, causal influences can conceivably travel faster than light, as long as they do not permit superluminal signaling.

  5. 5.

    One motivation for this might be that parameter independence, when suitably generalized holds in orthodox quantum mechanics [6].

  6. 6.

    Different tests could be designed using the equivalent conditions \(P(A\vert X,Y) = P(A\vert X)\) or \(P(A,Y \vert X)=P(A\vert X)P(Y\vert X)\), but these are only reliable in the case where marginal independence of the settings holds exactly.

  7. 7.

    The term “average” is used because the marginal distributions over the observed variables are defined as an average over the unobserved ones.

  8. 8.

    Strictly speaking, any modification of the “natural” causal mechanism is an intervention, even if it only partially breaks the causal links [31, 62], but for the present purpose the strong definition is most appropriate.

References

  1. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  2. Bell, J.S.: The theory of local beables. Epistemological Lett. 9, 11–24 (1976)

    Google Scholar 

  3. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  4. Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  5. Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  6. Wiseman, H. M., Cavalcanti, E. G.: Causarum investigatio and the two bell’s theorems of John Bell (2015). arXiv:1503.06413

    Google Scholar 

  7. Cavalcanti, E.G., Wiseman, H.M.: Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments). Found. Phys. 42, 1329–1338 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zukowski, M., Brukner, Č.: Quantum non-locality-it ain’t necessarily so. J. Phys. A: Math. Theor. 47, 424009 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brans, C.H.: Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219–226 (1988)

    Article  Google Scholar 

  10. Branciard, C., Brunner, N., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Ling, A., Scarani, V.: Testing quantum correlations versus single-particle properties within Leggett’s model and beyond. Nat. Phys. 4, 681–685 (2008)

    Article  Google Scholar 

  11. Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)

    Article  ADS  Google Scholar 

  12. Hall, M.J.W.: Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84, 022102 (2011)

    Article  ADS  Google Scholar 

  13. Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011)

    Article  ADS  Google Scholar 

  14. Chaves, R., Kueng, R., Brask, J.B., Gross, D.: Unifying framework for relaxations of the causal assumptions in Bell’s theorem. Phys. Rev. Lett. 114, 140403 (2015)

    Article  ADS  Google Scholar 

  15. Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)

    Article  ADS  Google Scholar 

  16. Aktas, D., Tanzilli, S., Martin, A., Pütz, G., Thew, R., Gisin, N.: Demonstration of quantum nonlocality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015)

    Article  ADS  Google Scholar 

  17. Pütz, G., Gisin, N.: Measurement dependent locality. New J. Phys. 18, 055006 (2016)

    Article  MathSciNet  Google Scholar 

  18. Chaves, R., Majenz, C., Gross, D.: Information-theoretic implications of quantum causal structures. Nat. Commun. 6, 5766 (2015)

    Article  ADS  Google Scholar 

  19. Fritz, T.: Beyond Bell’s theorem: correlation scenarios. New J. Phys. 14, 103001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fritz, T.: Beyond Bell’s theorem ii: scenarios with arbitrary causal structure. Comm. Math. Phys. 1–45 (2015)

    Google Scholar 

  21. Cavalcanti, E.G., Lal, R.: On modifications of Reichenbach’s principle of common cause in light of Bell’s theorem. J. Phys. A Math. Theor. 47, 424018 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pienaar, J., Brukner, Č.: A graph-separation theorem for quantum causal models. New J. Phys. 17, 073020 (2015)

    Article  ADS  Google Scholar 

  23. Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)

    Article  ADS  Google Scholar 

  24. Henson, J., Lal, R., Pusey, M.F.: Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16, 113043 (2014)

    Article  ADS  Google Scholar 

  25. Brukner, Č.: Quantum causality. Nat. Phys. 10, 259–263 (2014)

    Article  Google Scholar 

  26. Oreshkov, O., Giarmatzi, C.: Causal and causally separable processes. New J. Phys. 18, 093020 (2016)

    Article  ADS  Google Scholar 

  27. Munroe, R.: XKCD webcomic (2009). https://xkcd.com/552/

  28. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  29. Spirtes, P., Glymour, N., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, New York (2001)

    Google Scholar 

  30. Woodward, J.: Making Things Happen: A Theory of Causal Explanation. Oxford University Press, Oxford (2005)

    Google Scholar 

  31. Costa, F., Shrapnel, S.: Quantum causal modelling. New J. Phys. 18, 063032 (2016)

    Article  ADS  Google Scholar 

  32. Hausman, D.M., Woodward, J.: Independence, invariance and the causal Markov condition. Br. J. Philos. Sci. 50, 521–583 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Näger, P.M.: The causal problem of entanglement. Synthese 193, 1127–1155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Clarke, J.: Private communication

    Google Scholar 

  35. Evans, P. W.: Quantum causal models, faithfulness and retrocausality (2015). arXiv:1506.08925

    Google Scholar 

  36. Geiger, D., Meek, C.: Quantifier elimination for statistical problems. In: Proceedings of 15th Conference on Uncertainty in Artificial Intelligence, pp. 226–235 (1999)

    Google Scholar 

  37. Tian, J., Pearl, J.: On the testable implications of causal models with hidden variables. In: Proceedings of 18th Conferece Uncertainty in Atrificial Intelligence, pp. 519–527. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  38. Chaves, R., Luft, L., Maciel, T. O., Gross, D., Janzing, D., Schölkopf, B.: Inferring latent structures via information inequalities. In: Proceedings of 30th Conference on Uncertainty in Artificial Intelligence, pp. 112–121 (2014)

    Google Scholar 

  39. Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.: Distinguishing cause from effect using observational data: methods and benchmarks. J. Mach. Learn. Res. 17, 1–102 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Ferrie, C.: Private communication

    Google Scholar 

  41. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  42. Ringbauer, M., Broome, M. A., Myers, C. R., White, A. G., Ralph, T. C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, p. 4145 (2014)

    Google Scholar 

  43. Zych, M.: Private communication

    Google Scholar 

  44. Pütz, G., Rosset, D., Barnea, T.J., Liang, Y.-C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)

    Article  Google Scholar 

  45. Hall, M. J. W.: The Significance of Measurement Independence for Bell Inequalities and Locality, 189–204. Springer International Publishing, New York (2016)

    Google Scholar 

  46. Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  47. Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  48. Pawłowski, M., Kofler, J., Paterek, T., Seevinck, M., Brukner, Č.: Non-local setting and outcome information for violation of Bell’s inequality. New J. Phys. 12, 083051 (2010)

    Article  ADS  Google Scholar 

  49. Dash, D.: Restructuring dynamic causal systems in equilibrium. In: Proceedings of 10th Conference on Artificial Intelligence and Statistics (2005)

    Google Scholar 

  50. Ringbauer, M., Giarmatzi, C., Chaves, R., Costa, F., White, A.G., Fedrizzi, A.: Experimental test of nonlocal causality. Sci. Adv. 2, e1600162 (2016)

    Article  ADS  Google Scholar 

  51. Stenner, M.D., Gauthier, D.J., Neifeld, M.A.: The speed of information in a ’fast-light’ optical medium. Nature 425, 695–698 (2003)

    Article  ADS  Google Scholar 

  52. Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003)

    Article  ADS  Google Scholar 

  53. Hossenfelder, S. Free will is dead, let’s bury it. Backreaction (Blog) (2016)

    Google Scholar 

  54. Cramer, J. G.: An overview of the transactional interpretation. Int. J. Theor. Phys. 27 (1988)

    Google Scholar 

  55. Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review (2001). arXiv:quant-ph/0105101

    Google Scholar 

  56. Price, H., Wharton, K.: Disentangling the quantum world. Entropy 17, 7752–7767 (2015)

    Article  ADS  Google Scholar 

  57. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    Article  ADS  Google Scholar 

  58. Fedrizzi, A., Herbst, T., Poppe, A., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)

    Article  ADS  Google Scholar 

  59. Symul, T., Assad, S. M., Lam, P. K.: Real time demonstration of high bitrate quantum random number generation with coherent laser light. App. Phys. Lett. 98 (2011)

    Google Scholar 

  60. Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  61. Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.: Quantifying causal influences. Ann. Stat. 41, 2324–2358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Korb, K. B., Hope, L. R., Nicholson, A. E., Axnick, K.: Varieties of causal intervention. In: PRICAI 2004: Trends in Artificial Intelligence, 322–331. Springer, Heidelberg (2004)

    Google Scholar 

  63. Braunstein, S.L., Caves, C.M.: Wringing out better Bell inequalities. Nucl. Phys. B 6, 211–221 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gallicchio, J., Friedman, A.S., Kaiser, D.I.: Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)

    Article  ADS  Google Scholar 

  65. Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987)

    Article  ADS  Google Scholar 

  66. Eberhard, P.H.: Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R750 (1993)

    Article  ADS  Google Scholar 

  67. Leggett, A.J.: Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33, 1469–1493 (2003)

    Article  MathSciNet  Google Scholar 

  68. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007)

    Article  ADS  Google Scholar 

  69. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental test of nonlocal realistic theories without the rotational symmetry assumption. Phys. Rev. Lett. 99, 210406 (2007)

    Article  ADS  Google Scholar 

  70. Colbeck, R., Renner, R.: Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101, 050403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Branciard, C.: Bell’s local causality, Leggett’s crypto-nonlocality, and quantum separability are genuinely different concepts. Phys. Rev. A 88, 042113 (2013)

    Article  ADS  Google Scholar 

  72. Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of ’spooky action at a distance’. Nature 454, 861–864 (2008)

    Article  ADS  Google Scholar 

  73. Bancal, J.-D., Pironio, S., Acín, A., Liang, Y.-C., Scarani, V., Gisin, N.: Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)

    Article  Google Scholar 

  74. Davies, T.: Private communication

    Google Scholar 

  75. Leifer, M. S., Spekkens, R. W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A, 052130 (2013)

    Google Scholar 

Download references

Acknowledgements

This chapter is based on work that was first published in Ref. [49], and, where appropriate, I have incorporated text of that paper. The experiments were performed with Christina Giarmatzi and the theory was largely developed by Rafael Chaves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ringbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ringbauer, M. (2017). Causality in a Quantum World. In: Exploring Quantum Foundations with Single Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64988-7_5

Download citation

Publish with us

Policies and ethics