On the Reality of the Wavefunction

  • Martin RingbauerEmail author
Part of the Springer Theses book series (Springer Theses)


The wavefunction is ubiquitous as a mathematical tool, and is used across the fields, from quantum chemistry to molecular dynamics in biological processes, yet we don’t know what it actually represents.



The work that forms the basis of this chapter was first published in Ref. [2]. I have incorporated text of that paper, where appropriate. The experiments were performed with Benjamin Duffus and also contributed to the research project in his Honours degree at the University of Queensland. The quantum states and measurements required for the experiment were computed by Cyril Branciard.


  1. 1.
    Pais, A.: Einstein and the quantum theory. Rev. Mod. Phys. 51, 863–914 (1979)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ringbauer, M., Duffus, B., Branciard, C., Cavalcanti, E.G., White, A.G., Fedrizzi, A.: Measurements on the reality of the wavefunction. Nat. Phys. 11, 249–254 (2015)CrossRefGoogle Scholar
  3. 3.
    Leifer, M.S.: Is the quantum state real ? An extended review of \(\psi \) -ontology theorems. Quanta 3, 67–155 (2014)CrossRefGoogle Scholar
  4. 4.
    Spekkens, R.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Jennings, D., Leifer, M.: No return to classical reality. Contemp. Phys. 57, 60–82 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86, 012103 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  8. 8.
    Bell, J.S.: On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Einstein, A.: Out of My Later Years. Citadel Press (1956)Google Scholar
  10. 10.
    Harrigan, N., Spekkens, R.W.: Einstein, Incompleteness, and the Epistemic View of Quantum States. Found. Phys. 40, 125–157 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caves, C.M., Fuchs, C.A.: Quantum information: How much information in a state vector? arXiv:quant-ph/9601025 (1996)
  12. 12.
    Daffertshofer, A., Plastino, A.R., Plastino, A.: Classical no-cloning theorem. Phys. Rev. Lett. 88, 210601 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Oppenheimer, R.: The Philosophy of Niels Bohr. Bull. Atom. Scientists 19 (1963)Google Scholar
  14. 14.
    Cabello, A.: Interpretations of quantum theory: a map of madness. arXiv:1509.04711 (2015)
  15. 15.
    Mermin, N.D.: Quantum mechanics: fixing the shifty split. Phys. Today 65, 8 (2012)CrossRefGoogle Scholar
  16. 16.
    Schlosshauer, M., Kofler, J., Zeilinger, A.: A snapshot of foundational attitudes toward quantum mechanics. Stud. Hist. Philos. Mod. Phys. 44, 222–230 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sommer, C.: Another Survey of Foundational Attitudes Towards Quantum Mechanics. arXiv:1303.2719 (2013)
  18. 18.
    Norsen, T., Nelson, S.: Yet another snapshot of foundational attitudes toward quantum mechanics. arXiv:1306.4646 (2013)
  19. 19.
    Brukner, C.: On the quantum measurement problem. arXiv:1507.05255, pp. 19–22 (2015)
  20. 20.
    Bohr, N.: The Philosophical Writings of Niels Bohr. Ox Bow Press (1987)Google Scholar
  21. 21.
    Einstein, A.: Physik und realität. J. Franklin Inst. 221, 313–347 (1936)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ballentine, L.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Fuchs, C.A.: QBism, the Perimeter of Quantum Bayesianism. arXiv:1003.5209 (2010)
  24. 24.
    Mermin, N.D.: QBism puts the scientist back into science. Nature 507, 421–423 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82, 749–754 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Paterek, T., Dakić, B., Brukner, Č.: Theories of systems with limited information content. New J. Phys.12 (2010)Google Scholar
  28. 28.
    Brukner, C., Zeilinger, A.: Information and fundamental elements of the structure of quantum theory. arXiv:quant-ph/0212084 (2002)
  29. 29.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. I & II. Phys. Rev. 85, 166–193 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Passon, O.: What you always wanted to know about Bohmian mechanics but were afraid to ask. arXiv:quant-ph/0611032 (2006)
  32. 32.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85, 062116 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    Everett, H.I.: “Relative State” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Griffiths, R.B.: A consistent quantum ontology. Stud. Hist. Philos. Mod. Phys. 44, 93–114 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hohenberg, P.C.: Colloquium : An introduction to consistent quantum theory. Rev. Mod. Phys. 82, 2835–2844 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Springer (2016)Google Scholar
  39. 39.
    Dieks, D., Vermaas, P.E. (eds.): The modal interpretation of quantum mechanics. The Western Ontario Series in Philosophy of Science, vol. 60. Springer, Netherlands (1998)Google Scholar
  40. 40.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–687 (1986)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Kastner, R.E.: The Transactional Interpretation of Quantum Mechanics. Cambridge University Press (2013)Google Scholar
  42. 42.
    Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review. arXiv:quant-ph/0105101 (2001)
  43. 43.
    Price, H.: Toy models for retrocausality. Stud. Hist. Philos. Mod. Phys. 39, 752–761 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Evans, P.W.: Retrocausality at no extra cost. Synthese 192, 1139–1155 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Evans, P.W.: Quantum causal models, faithfulness and retrocausality. arXiv:1506.08925 (2015)
  46. 46.
    Hall, M.J., Deckert, D.-A., Wiseman, H.M.: Quantum phenomena modeled by interactions between many classical worlds. Phys. Rev. X 4, 041013 (2014)Google Scholar
  47. 47.
    Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181–188 (2009)CrossRefGoogle Scholar
  48. 48.
    Bassi, A.: Models of spontaneous wave function collapse: what they are, and how they can be tested. J. Phys. 701, 012012 (2016)Google Scholar
  49. 49.
    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 476–479 (2012)CrossRefGoogle Scholar
  50. 50.
    Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with Its elements of reality? Phys. Rev. Lett. 108, 150402 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Patra, M.K., Pironio, S., Massar, S.: No-Go theorems for \(\psi \)-epistemic models based on a continuity assumption. Phys. Rev. Lett. 111, 090402 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Hardy, L.: Are quantum states real? Int. J. Mod. Phys. B 27, 1345012 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Emerson, J., Serbin, D., Sutherland, C., Veitch, V.: The whole is greater than the sum of the parts: on the possibility of purely statistical interpretations of quantum theory. arXiv:1312.1345 (2013)
  54. 54.
    Cabello, A., Gu, M., Gühne, O., Larsson, J.-Å., Wiesner, K.: Thermodynamical cost of some interpretations of quantum theory. Phys. Rev. A 94, 052127 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Frauchiger, D., Renner, R.: Single-world interpretations of quantum theory cannot be self-consistent. arXiv:1604.07422 (2016)
  56. 56.
    Shimony, A.: Search for a worldview which can accommodate our knowledge of microphysics. In: Philosophical Consequences of Quantum Theory. University of Notre Dame Press (1989)Google Scholar
  57. 57.
    Branciard, C.: How \(\psi \)-epistemic models fail at explaining the indistinguishability of quantum states. Phys. Rev. Lett. 113, 020409 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    Barrett, J., Cavalcanti, E.G., Lal, R., Maroney, O.J.E.: No \(\psi \)-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett. 112, 250403 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Leifer, M.S.: \(\psi \)-epistemic models are exponentially bad at explaining the distinguishability of quantum states. Phys. Rev. Lett. 112, 160404 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    Aaronson, S., Bouland, A., Chua, L., Lowther, G.: \(\psi \)-epistemic theories: the role of symmetry. Phys. Rev. A 88, 032111 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Bell, J.S.: The theory of local beables. Epistemol. Lett. 9, 11–24 (1976)Google Scholar
  63. 63.
    Kochen, S.B., Specker, E.: The Problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    Hardy, L.: Quantum ontological excess baggage. Stud. Hist. Philos. Mod. Phys. 35, 267–276 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Montina, A.: Exponential complexity and ontological theories of quantum mechanics. Phys. Rev. A 77, 022104 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Montina, A.: State-space dimensionality in short-memory hidden-variable theories. Phys. Rev. A 83, 032107 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    Howard, D.: Einstein on locality and separability. Stud. Hist. Philos. Sci. 16, 171–201 (1985)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Wiseman, H.M.: The two Bell’s theorems of John Bell. J. Phys. A 47, 424001 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Wiseman, H.M., Rieffel, E.G.: Reply to Norsen’s paper “Are there really two different Bell’s theorems?” arXiv:1503.06978 (2015)
  71. 71.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  72. 72.
    Wiseman, H.M., Cavalcanti, E.G.: Causarum investigation and the Two Bell’s Theorems of John Bell. arXiv:1503.06413 (2015)
  73. 73.
    Mazurek, M.D., Pusey, M.F., Kunjwal, R., Resch, K.J., Spekkens, R.W.: An experimental test of noncontextuality without unphysical idealizations. Nat. Commun. 7, 11780 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    Leifer, M.S., Maroney, O.J.E.: Maximally epistemic interpretations of the quantum state and contextuality. Phys. Rev. Lett. 110, 120401 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    Beltrametti, E.G., Bugajski, S.: A classical extension of quantum mechanics. J. Phys. A 28, 3329–3343 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Harrigan, N., Rudolph, T.: Ontological models and the interpretation of contextuality. arXiv:0709.4266 (2007)
  77. 77.
    Huxley, T.H.: Collected Essays VIII (1894)Google Scholar
  78. 78.
    Lewis, P.G., Jennings, D., Barrett, J., Rudolph, T.: Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 150404 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    Caves, C., Fuchs, C., Schack, R.: Conditions for compatibility of quantum-state assignments. Phys. Rev. A 66, 062111 (2002)ADSCrossRefGoogle Scholar
  80. 80.
    Nigg, D., Monz, T., Schindler, P., Martinez, E.A., Hennrich, M., Blatt, R., Pusey, M.F., Rudolph, T., Barrett, J.: Can different quantum state vectors correspond to the same physical state? An experimental test. New J. Phys. 18, 013007 (2015)CrossRefGoogle Scholar
  81. 81.
    Spekkens, R.: Why I Am Not a Psi-ontologist. Lecture at Perimeter Institute, PIRSA:12050021 (2012)Google Scholar
  82. 82.
    Schlosshauer, M., Fine, A.: Implications of the Pusey-Barrett-Rudolph quantum No-Go theorem. Phys. Rev. Lett. 108, 260404 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    Hall, M.J.W.: Generalisations of the recent Pusey-Barrett-Rudolph theorem for statistical models of quantum phenomena. arXiv:1111.6304 (2011)
  84. 84.
    Colbeck, R.: private communicationGoogle Scholar
  85. 85.
    Branciard, C.: private communicationGoogle Scholar
  86. 86.
    Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    Patra, M.K., Olislager, L., Duport, F., Safioui, J., Pironio, S., Massar, S.: Experimental refutation of a class of \(\psi \)-epistemic models. Phys. Rev. A 88, 032112 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    Leifer, M.: The reality of the quantum state from Kochen-Specker contextuality. Talk at EmQM15, Vienna(2015)Google Scholar
  89. 89.
    Knee, G.C.: Towards optimal experimental tests on the reality of the quantum state. New J. Phys. 19, 023004 (2017)ADSCrossRefGoogle Scholar
  90. 90.
    Leifer, M.: private communicationGoogle Scholar
  91. 91.
    Herzog, U., Bergou, J.: Distinguishing mixed quantum states: minimum-error discrimination versus optimum unambiguous discrimination. Phys. Rev. A 70, 022302 (2004)ADSCrossRefGoogle Scholar
  92. 92.
    Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)ADSCrossRefGoogle Scholar
  93. 93.
    Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandQueenslandAustralia

Personalised recommendations