Immune Suppressor Mechanisms in HCC



The liver has been recognized as a tolerogenic organ. This is based on clinical experience in the transplant setting, where immunosuppression is dosed relatively low or can even be discontinued in selected patients over time. Furthermore, the liver is showered with many antigens from the gastrointestinal tract delivered through the portal vein without causing active immune responses. In contrary, tumor-specific immune responses against tumors arising in the liver have been observed. Tumors have developed multiple molecular and cellular mechanisms to escape from anti-tumor immunity. An increase in the frequency of myeloid derived suppressor and regulatory T cells, two cell types with potent immune suppressor function has been described in patients with HCC and shown to correlate with worse outcome. Kupffer cells represent another immune cell with immunosuppressive function and different cytokines as well as cell surface molecules such as PD1/PD-L1 have been described. A better understanding of the immunosuppressive microenvironment in the liver will help better understand the development and growth of HCC and provide opportunities to specifically target mechanism leading to enhanced anti-tumor immunity and better outcome.


  1. 1.
    Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, et al. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223:472–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Mazariegos GV, Reyes J, Marino IR, Demetris AJ, Flynn B, Irish W, et al. Weaning of immunosuppression in liver transplant recipients. Transplant. 1997;63:243–9. NIH Public AccessCrossRefGoogle Scholar
  3. 3.
    Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol. 2009;31:333–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Caesar R, Reigstad CS, Bäckhed HK, Reinhardt C, Ketonen M, Lundén GÖ, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut BMJ Publishing Group. 2012;61:1701–7.Google Scholar
  5. 5.
    Moris D, Lu L, Qian S. Mechanisms of liver-induced tolerance. Curr Opin Organ Transplant. 2016;22(1):71–8.Google Scholar
  6. 6.
    Crispe IN. Immune tolerance in liver disease. Hepatology. 2014;60:2109–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Heymann F, Tacke F. Immunology in the liver – from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13:88–110. Nature Publishing GroupCrossRefPubMedGoogle Scholar
  8. 8.
    Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753–66. Nature Publishing GroupCrossRefPubMedGoogle Scholar
  9. 9.
    Tatsumi T, Takehara T, Katayama K, Mochizuki K, Yamamoto M, Kanto T, et al. Expression of costimulatory molecules B7–1 (CD80) and B7–2 (CD86) on human hepatocellular carcinoma. Hepatology. 1997;25:1108–14. Wiley Subscription Services, Inc., A Wiley CompanyCrossRefPubMedGoogle Scholar
  10. 10.
    Fujiwara K, Higashi T, Nouso K, Nakatsukasa H, Kobayashi Y, Uemura M, et al. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2004;19:1121–7. 2004 ed.CrossRefPubMedGoogle Scholar
  11. 11.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8(+) T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59:1415–26.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP, et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res. 2004;10:4332–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27:407–14. WB SaundersCrossRefPubMedGoogle Scholar
  15. 15.
    Gabrielson A, Wu Y, Wang H, Jiang J, Kallakury B, Gatalica Z, et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res. 2016;4:419–30. American Association for Cancer ResearchCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–57.CrossRefPubMedGoogle Scholar
  17. 17.
    Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178:1914–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Fu J, Zhang Z, Zhou L, Qi Z, Xing S, Lv J, et al. Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology. 2013;58:139–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19:6678–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: integrating Immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Condamine T, Ramachandran I, Youn J-I, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.CrossRefPubMedGoogle Scholar
  24. 24.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68. Nature Publishing GroupCrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell. 2016;30:533–47.CrossRefPubMedGoogle Scholar
  26. 26.
    Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol. 2013;59:1007–13.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, et al. Increase in CD14(+)HLA-DR (−/low) myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62:1421–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Comms. 2016;7:12150.CrossRefGoogle Scholar
  29. 29.
    Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011;11:802–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50:799–807.CrossRefPubMedGoogle Scholar
  32. 32.
    Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002;16:935–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Gao X-H, Tian L, Wu J, Ma X-L, Zhang C-Y, Zhou Y, et al. Circulating CD14 +HLA-DR −/low myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery. Hepatol Res. 2017;47(10):1061–71.Google Scholar
  34. 34.
    Mizukoshi E, Yamashita T, Arai K, Terashima T, Kitahara M, Nakagawa H, et al. Myeloid-derived suppressor cells correlate with patient outcomes in hepatic arterial infusion chemotherapy for hepatocellular carcinoma. Cancer Immunol Immunother. 2016;65:715–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang D, An G, Xie S, Yao Y, Feng G. The clinical and prognostic significance of CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumor Biol. 2016;37:10427–33. Springer NetherlandsCrossRefGoogle Scholar
  36. 36.
    Eggert T, Greten TF. Tumor regulation of the tissue environment in the liver. Pharmacol Ther. 2017;173:47–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62:481–95.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Höchst B, Schildberg FA, Sauerborn P, Gäbel YA, Gevensleben H, Goltz D, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol. 2013;59:528–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Resheq YJ, Li K-K, Ward ST, Wilhelm A, Garg A, Curbishley SM, et al. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells. J Immunol. 2015;194:2578–86. American Association of ImmunologistsCrossRefPubMedGoogle Scholar
  40. 40.
    Yu M-C, Chen C-H, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40:1312–21. Wiley subscription services, Inc., A Wiley CompanyCrossRefPubMedGoogle Scholar
  41. 41.
    Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol. 2000;18:423–49.CrossRefPubMedGoogle Scholar
  42. 42.
    Speiser DE, Ho P-C, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599–611.CrossRefPubMedGoogle Scholar
  43. 43.
    Wiedemann GM, Knott MML, Vetter VK, Rapp M, Haubner S, Fesseler J, et al. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology. 2016;5:e1175794.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.CrossRefPubMedGoogle Scholar
  45. 45.
    Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol. 2006;45:254–62.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou J, Ding T, Pan W, Zhu L-Y, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer. 2009;125:1640–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.CrossRefPubMedGoogle Scholar
  48. 48.
    Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP+CTLA-4+Foxp3+ T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–44.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Greten TF, Ormandy LA, Fikuart A, Höchst B, Henschen S, Hörning M, et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother. 2010;33:211–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Motoyoshi Y, Kaminoda K, Saitoh O, Hamasaki K, Nakao K, Ishii N, et al. Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep. 2006;16:141–6.PubMedGoogle Scholar
  52. 52.
    Kalathil SG, Lugade AA, Miller A, Iyer R, Thanavala Y. PD-1(+) and Foxp3(+) T cell reduction correlates with survival of HCC patients after sorafenib therapy. JCI Insight. 2016;1(11):pii: e86182.CrossRefGoogle Scholar
  53. 53.
    Yang Z-Q, Yang Z-Y, Zhang L-D, Ping-Bie WS-G, Ma K-S, et al. Increased liver-infiltrating CD8+FoxP3+ regulatory T cells are associated with tumor stage in hepatocellular carcinoma patients. Hum Immunol. 2010;71:1180–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol. 2016;13:316–27.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P, et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology. 2015;62:279–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69:8067–75.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol. 2008;26:2707–16. 2008 ed.CrossRefPubMedGoogle Scholar
  59. 59.
    Budhu A, Forgues M, Ye Q-H, Jia H-L, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.CrossRefPubMedGoogle Scholar
  60. 60.
    Xiao X, Lao X-M, Chen M-M, Liu R-X, Wei Y, Ouyang F-Z, et al. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov. 2016;6:546–59.CrossRefPubMedGoogle Scholar
  61. 61.
    Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59:567–79.CrossRefPubMedGoogle Scholar
  62. 62.
    Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10:248–56. 2010 ed.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhao F, Hoechst B, Gamrekelashvili J, Ormandy LA, Voigtländer T, Wedemeyer H, et al. Human CCR4+CCR6+Th17 cells suppress autologous CD8+ T cell responses. J Immunol. 2012;188:6055–62.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15:295–307.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tan H, Wang S, Zhao L. A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol. 2017;44:213–21.CrossRefPubMedGoogle Scholar
  66. 66.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brandau S, Dumitru CA, Lang S. Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol. 2013;35:163–76. Springer-VerlagCrossRefPubMedGoogle Scholar
  68. 68.
    Zhou S-L, Zhou Z-J, Hu Z-Q, Huang X-W, Wang Z, Chen E-B, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to Sorafenib. Gastroenterology. 2016;150:1646–1658.e17.CrossRefPubMedGoogle Scholar
  69. 69.
    Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15:166–79. (Landmark Ed)CrossRefGoogle Scholar
  70. 70.
    Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2016;36(8):1090–101.CrossRefPubMedGoogle Scholar
  71. 71.
    De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8:211–26.CrossRefPubMedGoogle Scholar
  72. 72.
    Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007;178:7405–11.CrossRefPubMedGoogle Scholar
  73. 73.
    Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007;109:5276–85. American Society of HematologyCrossRefPubMedGoogle Scholar
  74. 74.
    Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology. 2013;57:1416–25. Wiley Subscription Services, Inc., A Wiley CompanyCrossRefPubMedGoogle Scholar
  75. 75.
    Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, et al. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology. 2004;40:1062–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Cabrera R, Ararat M, Cao M, Xu Y, Wasserfall C, Atkinson MA, et al. Hepatocellular carcinoma immunopathogenesis: clinical evidence for global T cell defects and an immunomodulatory role for soluble CD25 (sCD25). Dig Dis Sci. 2010;55:484–95. 2009 ed.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cabrera R, Ararat M, Eksioglu EA, Cao M, Xu Y, Wasserfall C, et al. Influence of serum and soluble CD25 (sCD25) on regulatory and effector T-cell function in hepatocellular carcinoma. Scand J Immunol. 2010;72:293–301. 2010 ed.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cariani E, Pilli M, Zerbini A, Rota C, Olivani A, Pelosi G, et al. Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One. 2012;7:e32493.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zeng Z, Shi F, Zhou L, Zhang M-N, Chen Y, Chang X-J, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. Luk J, editor. PLoS ONE. 2011;6:e23621.Google Scholar
  80. 80.
    Wang B-J. Immunostaining of PD-1/PD-ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 2011;17:3322–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9. 2009 ed.CrossRefPubMedGoogle Scholar
  82. 82.
    Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, et al. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch. 2016;470:185–96. Springer Berlin HeidelbergCrossRefPubMedGoogle Scholar
  83. 83.
    Pardee AD, Shi J, Butterfield LH. Tumor-derived -fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J Immunol. 2014;193:5723–32.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, et al. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. J Immunol. 2009;182:5140–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GI Malignancy Section, TGIBCenter for Cancer Research, NCIBethesdaUSA

Personalised recommendations